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ABSTRACT

This work reveals that memory-intensive computation is a rising

performance-critical factor in recent machine learning models. Due

to a unique set of new challenges, existing ML optimizing compilers

cannot perform efficient fusion under complex two-level dependen-

cies combined with just-in-time demand. They face the dilemma

of either performing costly fusion due to heavy redundant com-

putation, or skipping fusion which results in massive number of

kernels. Furthermore, they often suffer from low parallelism due to

the lack of support for real-world production workloads with irreg-

ular tensor shapes. To address these rising challenges, we propose

AStitch, a machine learning optimizing compiler that opens a new

multi-dimensional optimization space for memory-intensive ML

computations. It systematically abstracts four operator-stitching

schemes while considering multi-dimensional optimization objec-

tives, tackles complex computation graph dependencies with novel

hierarchical data reuse, and efficiently processes various tensor

shapes via adaptive thread mapping. Finally, AStitch provides just-

in-time support incorporating our proposed optimizations for both

ML training and inference. AlthoughAStitch serves as a stand-alone

compiler engine that is portable to any version of TensorFlow, its

basic ideas can be generally applied to other ML frameworks and

optimization compilers. Experimental results show that AStitch can
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achieve an average of 1.84× speedup (up to 2.73×) over the state-

of-the-art Google’s XLA solution across five production workloads.

We also deploy AStitch onto a production cluster for ML workloads

with thousands of GPUs. The system has been in operation for

more than 10 months and saves about 20,000 GPU hours for 70,000

tasks per week.
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1 INTRODUCTION

Machine learning models usually consist of two types of opera-

tions: compute-intensive operations and memory-intensive oper-

ations. Compute-intensive operations are typically composed of

heavy computation kernels (e.g., GEMM/GEMV and Convolution),

while memory-intensive operations are often bounded by memory

bandwidth (e.g., element-wise and reduction operations). Many re-

cent works [14, 16, 18, 41, 43, 55] havemade significant efforts on op-

timizing compute-intensive operations since they dominate the ex-

ecution of some DNN workloads, especially in the domains of com-

puter vision (CV, such as image classification [29], segmentation[27]
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Figure 1: Ratio of memory-intensive computations. The ra-

tio is the proportion of memory-intensive ops’ metrics to

those of all GPU kernels under study. Statistics on execution

time and kernel count are collected from TensorFlow (v1.15)

execution.

et al.). However, the recent advancement of machine learning has

resulted in many novel model structures (e.g., Attention[44]) in

which memory-intensive operations account for an even more sig-

nificant portion of execution time than their compute-intensive

counterparts.

Figure.1 shows the ratio of memory-intensive computation for

five representative models used in real-life production on NVIDIA

V100 GPU, including NLP (BERT[21], Transformer[44]), recom-

mendation (DIEN[58]) and speech/character recognition (ASR[47],

CRNN[40]). Note that GPU is one of the most widely-adopted ac-

celerators for performing machine learning training and inference

today. With an average ratio of 63.2% in execution time and 89.6% in

total kernel numbers, memory-intensive computation has already

become a dominating factor that significantly impacts the train-

ing/inference efficiency of many recent DNN workloads. Moreover,

the ratio of computing power to memory bandwidth has also drasti-

cally increased on the recent generations of GPU architectures, e.g.,

a 5.6× increase from NVIDIA V100 to A100 (note that A100 uses

TF32 as the default data type). As a result, for example, the average

portion of the execution time contributed by the memory-intensive

operations from the five models of Figure.1 increases to as high as

76.7% on A100. Therefore, effectively optimizing memory-intensive

computations in today’s DNN workloads becomes increasingly

crucial and urgent.

Memory-intensive computations usually form a set of subgraphs,

which are divided by compute-intensive operators in a machine

learning computation graph. The overhead caused by memory-

intensive computations mainly comes from intensive off-chip mem-

ory access, severe CPU-GPU context switch and high framework

scheduling cost due to the large amount of kernels required to

be launched and executed. Although the traditional kernel fusion

techniques [37, 38, 45, 49] can help partially address these issues

by putting memory-intensive subgraphs into one GPU kernel, they

cannot fully meet the demand of current machine learning opti-

mizations in which there are various ML model structures and

innumerable customized variants, requiring just-in-time (JIT) opti-

mizations for a given arbitrary model structure rather than ad-hoc

solutions.

In recent years, there have been several ML compilers [11, 18]

supporting kernel fusion for general memory-intensive ops to re-

duce off-chip memory access, CPU-GPU context switching and

framework-level operator scheduling overhead induced by frequent

kernel launching. However, a unique set of new challenges emerge

from executing these memory-intensive ML models in production.

F FGEMM
F F SGEMM

Parallelism Parallelism

Execution time Execution time

b) XLA/TVM execution c) AStitch execution

F Fusion kernel for memory-intensive operators

S Stitch operators beyond existing fusions.

a) Subgraph sample and fusion plan with XLA/TVM.

Figure 2: Conceptual illustration of how AStitch outper-

forms XLA and TVM for processing memory-intensive sub-

graphs.AStitch stitches large scope ofmemory-intensive op-

erators together to reduce non-computation overhead and

increase parallelism.

First, complex two-level dependencies combined with just-in-time

demand exacerbates training/inference inefficiency (Sec.2.3.1). Con-

strained by this challenge, state-of-the-art ML compilers face the

dilemma of executing costly fusion under heavy redundant compu-

tation, or skipping fusion which in turn generates massive number

of kernels. Second, irregular tensor shapes in real-world produc-

tion workloads often lead to poor parallelism control and severe

performance issues in the current ML compilers (Sec.2.3.2).

To address these limitations, we propose AStitch, a machine

learning optimizing compiler that opens a new multi-dimensional

optimization space for memory-intensive ML computations by

supporting efficient just-in-time operator stitching for arbitrary

memory-intensive subgraphs. It provides a JIT-based joint optimiza-

tion of dependency characteristics, memory hierarchy (locality) and

parallelism. Specifically, we propose hierarchical data reuse tech-

nique (Sec.3.2) to address the complex two-level dependencies and

enlarge fusion scopes, avoiding the dilemma of choosing between

fusion with high computation overhead and inadequate fusion. An

adaptive thread mapping technique (Sec.3.3) is also proposed to

adapt different input tensor shapes and generate proper thread

mapping schedules for maximizing hardware utilization and paral-

lelism. Finally, we make several key design observations (Sec.4), and

by leveraging them we design a compiler to enable the proposed

optimizations automatically. We use łstitchingž in this paper to

differ our advanced fusion techniques from the existing ML com-

piler fusion approaches: our expansion of the current fusion scope

is to "stitch" many small and basic fusions enabled by the current

works into much larger and broader fusions. Figure.2 illustrates

how AStitch outperforms XLA and TVM conceptually. We evaluate

AStitch on a set of common machine learning models in production.

AStitch achieves up to 2.73× speedup for inference over the state-

of-the-art solutions. In summary, this work makes the following

contributions:

• It reveals that memory-intensive computation is a rising

performance-critical factor in recent non computer vision

machine learning models.
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Figure 3: Typical memory-intensive operations.

• It tackles twomajor performance issues of memory-intensive

ML computations, i.e., inefficient fusion and inputs with

irregular tensor shapes.

• It is the first work to thoroughly investigate how to optimize

memory-intensive ML computations from a joint aspect of

dependency characteristics, memory hierarchy and paral-

lelism.

• It designs a compiler to enable the proposed optimizations

just-in-time for any given arbitrary machine learning model

for both training and inference.

• It implements a production-readyML compiler that is portable

to any version of TensorFlow. Users do not need to modify

source code or tune code generation schedule to use our

compiler.

2 BACKGROUND AND CURRENT
CHALLENGES

In this work, we focus our discussion on significantly improving

training and inference efficiency of memory-intensive ML applica-

tions on themostwidely-adopted general-purposeAI accelerators[6]:

GPUs. NVIDIA chips (and its terminologies) are used in this paper

as our validation platforms; however, the proposed techniques are

general and applicable to other GPU architectures[1].

2.1 Essential Memory-Intensive Ops in Current
Models

A machine learning workload is usually represented as a computa-

tion graph in modern frameworks [12, 36]. Most of the compute-

intensive operators in the graph are disconnected. They divide the

graph into a set of subgraphs, each with a set of tens or even hun-

dreds of memory intensive operators. There are two types of widely-

adopted operators that cover the majority of the memory-intensive

computations in modern machine learning models: element-wise

ops and reduce ops.

As shown in Figure.3, the elements in an element-wise op are

processed independently in an element-wise manner. Element-wise

ops can be further classified into light element-wise ops and heavy

element-wise ops. The former executes lighter computations like

add and sub, while the latter executes significantly more expensive

computations (e.g., tanh, power, and log). Broadcast is often regarded

as element-wise.

A reduce op takes a tensor as input and reduces its one or more

dimensions. A reduce is referred as row-reduce if it reduces on a

dimension where elements are continuous in memory; otherwise,

column-reduce. Row-reduce for one row is usually organized within

a GPU thread block, in which adjacent threads read continuous

memory addresses for efficiency. Column-reduce is applied to reduce

A

B

C

Input/output

Light element-wise op

Reduction opBroadcast op

Expensive element-wise op

Figure 4: A typical subgraph in a Transformer model.

discontinuous elements, often requiring several thread blocks with

atomic operations to ensure its correctness.

Due to the high frequency of reduce and broadcast applied inmod-

ern machine learning computation graphs, tensor shapes between

operators become increasingly diverse. For instance, the Trans-

former model in Figure.1 contains 1,666 reduce operators which

counts for approximately 10% of the total computation operators.

These reduce operators can form arbitrary graph typologies that

result in complex dependencies.

2.2 Memory-Intensive Op Fusion

State-of-the-art works (e.g., XLA[11] and TVM[18]) support kernel

fusion of general memory-intensive ops to reduce off-chip memory

access, CPU-GPU context switching and framework-level operator

scheduling overhead induced by frequent kernel launching.

One of the most fundamental factors of fusion is code genera-

tion ability. ML compilers often make fusion decisions (e.g., pattern

matching process in some studies) according to whether they can

generate efficient code. For example, TVM/XLA’s code generators

deal with all data dependencies with per-element input inline to

merge producer with consumer together. However, we have identi-

fied a set of limitations for such code generation approach in Sec.2.3.

Simply modifying the fusion decision logic (e.g., enlarging fusion

scope) may lead to poor performance for TVM/XLA.

In this work, we address the fundamental code generation prob-

lem rather than the surface-level pattern matching problem.

2.3 Major Limitations of the State-Of-The-Arts

There is a unique set of new challenges emerged from executing

these memory-intensive ML models in production environment.

We further elaborate them as follows.

2.3.1 Challenge I: Complex Two-Level Dependencies CombinedWith

Just-In-Time Demand Exacerbates Training/Inference Inefficiency. A

memory-intensive sub-graph usually consists of tens or even hun-

dreds of operators. There are two levels of dependencies. Operator-

level dependency describes operator connection represented in a

subgraph, e.g., operator B and C depends on operator A in Figure.4.

Element-level dependency indicates the dependency between el-

ements within tensors, such as the element 9 depends on elements
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1, 4, 4 for reduce in Figure.3. At operator level, operators tend to

form complex connections in these memory-intensive subgraphs.

At element level, during tensor processing, the frequent occurrence

of reduce and broadcast may also incur many one-to-many depen-

dencies. Furthermore, there are various machine learning model

structures and innumerable customized variants, demanding just-

in-time (JIT) optimizations for a given arbitrary model structure

rather than ad-hoc solutions. In other words, unlike kernel fusion

schemes used in traditional domains like HPC [45], database[49],

and image processing[37, 38] in which static workloads are often

the targets for optimization, ML practitioners are typically required

to customize model structures via frequent tuning and execution,

which demands automatic optimization at each running (i.e., just-in-

time) rather than hand-tuned fusion before each trial. This also in-

creases the overall complexity of the design optimization. Thus, the

two-level dependencies combined with JIT demand makes fusion

optimization extremely challenging for modern memory-intensive

ML models.

Constrained by these unique challenges, we make a key obser-

vation that current machine learning optimization compilers (e.g.,

XLA[11], TVM[18]) cannot perform efficient fusion under such

two-level dependencies. Specifically, for operators with complex

dependencies, these optimization compilers either simply skip nec-

essary fusions, or incurs redundant computation after fusion. We

dissect the root causes behind these limitations as follows.

Key Inefficiency: large number of kernels generated by the

ineffective fusion strategies for memory-intensive subgraphs.

State-of-the-art compilers (e.g., XLA and TVM) cannot efficiently

fuse two common memory-intensive patterns due to the inability

to deal with one-to-many element-level dependencies: (1) reduce

ops with its consumers (e.g., orange circles in Figure.4), and (2)

costly element-wise ops followed by broadcast ops (e.g., blue and

green circles in Figure.4). We find that the current ML compiler

frameworks face the following dilemma when conducting fusion

on these two patterns:

(i) Fuse? Heavy redundant computation. If fusion is performed

for the ops in these two patterns, we observe that neither XLA

nor TVM communicates intermediate results between threads; they

only leverage per-thread registers to fuse ops in the compiler. When

there are one-to-many element-level dependencies, where one ele-

ment generated by the producer is required by multiple elements of

the consumer(s), each thread of the consumer will independently

compute this common element, causing significant computation re-

dundancy. Figure.5 illustrates such redundant computations when

TVM fuses ops power<2> - broadcast<2,128> - add<2,128>1 together.

Here we only show one operand of add op to simplify the demon-

stration. In this case, every 128 elements of add require one element

produced by power. However, power will recompute 128 times for

the same value in 128 different threads because the compiler can-

not cope with the one-to-many dependency effectively with its

automatic strategy. Power is an expensive element-wise op and

requires a large number of cycles to produce data.When the ten-

sor shape is large, it requires several waves of threads, causing

notable waste of GPU resources caused by redundant computation

of power. Additionally, when fusing reduce ops with its consumer

1op<m,n> represents operator op processing a tensor with shape [m,n]

128 threads128 threads

……

power (in[0])
……

power (in[1])

add (reg[0,tid]) add (reg[1,tid])

SIMT thread

thread processing redundant computation

register

Figure 5: Redundant computation in TVMwhen attempting

to fuse power<2> - broadcast<2,128> - add<2,128>1 automat-

ically with compiler. Different colors for power represent

threads that process different elements in the input tensor.

(e.g., pattern(1)), the redundant computation will become more se-

vere as each thread of the consumer needs to recompute the whole

reduction independently. Note that reduce op itself is time consum-

ing and is typically followed by broadcast ops which may cause

one-to-many dependencies.

Note that compiler optimization is quite different from hard-

coded optimization. As for Figure.5, GPU experts may manually

buffer the results of power on shared memory within thread-block

to enable reuse for add. However, giving compiler a subgraph (

e.g., Figure.4) with frequent element-level one-to-many dependen-

cies and diverged operator connections (operator dependency), it

is quite tricky to decide how to organize intermediate data for

reuse automatically given the complexity of the dependencies and

underlying hardware. Meanwhile, compilers also care about par-

allelism of the operators, which further affects data locality. Thus,

the state-of-the-art ML compiler frameworks, if deciding to fuse

the operators from the two patterns, run into the heavy redundant

computation issue discussed above due to the lack of considera-

tion for a joint automatic optimization of complex dependency

characteristics, parallelism and locality.

(ii) Skipping fusion? More kernels are generated for execution. To

avoid these redundant computations, state-of-the-art designs tend

to skip fusion when encountering one-to-many dependencies from

the two patterns. For example, XLA skips fusion when encountering

pattern (1) and (2) above, resulting in a large number of kernels for

memory-intensive operators. For the Transformer model, XLA gen-

erates around 3 more times of kernels for memory-intensive com-

putations than the corresponding compute-intensive computations.

As discussed in Sec.2.1, since effective fusion should merge all the

memory-intensive operators between two the compute-intensive

operators to avoid unnecessary kernel launching overhead and

off-chip memory access, ideally the number of kernels from the two

types of computations should be roughly the same. On the other

hand, TVM also skips fusion upon reduce ops (i.e., pattern(1)), but

it continues to fuse for pattern (2). Although this may significantly

reduce the number of generated kernels, it also introduces large

redundant computation overhead discussed above.

Finally, at operator level, one-to-many dependencies, in which

an op is the producer of multiple ops, may also lead to redundant
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Figure 6: Typical poor parallelism issues in existing works.

computations. For example, in Figure.4, operators B and C will

be separated into two different kernels in the state-of-the-art ML

compilers with operator A inlined in the two kernels redundantly.

2.3.2 Challenge II: Irregular Tensor Shapes in Real-World Production

Workloads. We also observe that there are tensor dimensions that

appear highly uneven in production workloads, which we refer

as irregular tensor shapes. This makes it challenging for compiler

to generate kernels with good parallelism because it demands JIT

optimization under the given tensor shapes that are not known in

advance. We observe that state-of-the-art works lack of adaptive

designs for this unique feature, resulting in poor performance.

Key Inefficiency: irregular tensor shapes lead to either too

many small partitions or too few large partitions on GPU.We

observe that tensor shapes in production workloads are usually

different from the benchmarks in standard model-zoos. Figure.6

shows two cases of poor parallelism on GPU from production

tensor shapes. For instance, processing row-reduce from shape

<750000,32> to <750000>, a real-case in DIEN model[58], results

in small block size issue on XLA (Figure.6-(a)). Here XLA auto-

generates 750,000 GPU thread-blocks with the block-size of 32,

leading to low parallelism. This is because there is an upper-bound

number of thread-blocks that GPU can concurrently execute; when

the thread-block size is too small, the concurrency at any given time

is also low. Another case is for row-reduce from shape <64,30000>

to <64>, a real-case in a Transformer model, resulting in small block

count issue on XLA (Figure.6-(b)). XLA auto-generates 64 thread-

blocks with the size of 1024, whereas a V100 GPU can concurrently

schedule 160 thread-blocks for the same block size, causing serious

hardware under-utilization. Therefore, these production workloads

demand a better compiler design to automatically generate thread

mappings suitable to various tensor shapes.

3 KEY DESIGN METHODOLOGY

High-level Objectives. To address challenge I and II discussed

previously, we propose AStitch, a machine learning optimizing

compiler that opens a new multi-dimensional optimization space

for memory-intensive ML computations by supporting efficient

just-in-time operator stitching for arbitrary memory-intensive sub-

graphs.

In this section, we describe our basic idea named hierarchical data

reuse (Sec.3.2) to address challenge I (Sec.2.3.1), and adaptive thread

mapping (Sec.3.3) to address challenge II (Sec.2.3.2). We present our

Table 1: Stitching scheme abstraction with joint considera-

tion.

Scheme Dependency Memory Space
Locality v.s.
Parallelism

Independent None None -
Local one-to-one Register -

Regional one-to-many Shared memory CAT locality first
Global Any Global memory Parallelism first

operator-stitching scheme abstraction based on joint consideration

(Sec.3.1) for dependency abstractions discussion.

Note that this section highlights the code generation insights

of stitching, which can be applied either manually or via compiler

optimizations. We will describe how to develop the optimizing

compiler in Sec.4 based on the insights from this section.

3.1 Operator-Stitching Scheme Abstraction

As is shown in Table.1, we abstract four types of stitching schemes,

covering all the scenarios of dependencies from the joint consider-

ation of dependency, memory hierarchy and parallelism.

Independent scheme represents operators that are independent

of each other. Local scheme represents adjacent operators with

element-level one-to-one dependency (i.e., element-wise manner)

and the intermediate data is buffered in the per-thread register.

Here thread level data locality is guaranteed. These two schemes

are adopted by the state-of-the-art designs [11, 18, 55].

Regional scheme indicates one-to-many element-level depen-

dencies and the intermediate data here are buffered onGPU’s shared

memory for its consumers. The threadmapping (parallelism) should

guarantee thread-block level data locality. Take the example in Fig-

ure.5, where each result of power can be cached on shared memory

and reused by multiple threads performing add. Global scheme is

to cope with any complex dependency and the intermediate data

is buffered on global memory. Since this is a parallelism-oriented

scheme, there is no locality requirement (global memory is visi-

ble to all threads). Note that just like Regional scheme, the most

common case for the current machine learning models is still one-

to-many element-level dependency. However, sometimes optimiz-

ing for block locality hurts parallelism, leading to poor overall

performance. For example, Block locality requires organizing cor-

responding threads into a single thread block, which prevents the

potential higher parallelism by mapping these threads onto more

thread blocks. In this case, AStitch decides the tradeoff between

locality and parallelism (i.e., Regional vs Global) based on the char-

acteristics of the operator (Sec.4.3). In Sec.4, we will discuss how

to automatically determine the best stitching scheme according to

operator’s thread mapping.

3.2 Hierarchical Data Reuse Illustration

The multiple operator-stitching schemes enable a hierarchical data

reuse, with which we can stitch any operators together efficiently

without large computation redundancy. It helps to break the dilemma

in Challenge I (Sec.2.3.1). We first illustrate how the intermedi-

ate data between operators are maintained and reused for each

operator-stitching scheme.
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3.2.1 Data Reuse. Given the stitching schemes in Table.1, AStitch

enables two-levels of data reuse across memory hierarchies (i.e.,

registers, shared memory and global memory) to eliminate the

fusion dilemma:

Element-level data reuse. In AStitch , for one-to-many element-

level dependencies, the producer processes each data item only once

without incurring redundant computations. The result can be main-

tained on GPU shared/global memory buffer for its consumer(s) to

reuse in regional/global stitching scheme.

Operator-level data reuse. For one-to-many operator-level de-

pendencies, AStitch processes the producer only once and buffers

its result for its multiple consumers to reuse. For local stitching

scheme, the to-be-reused data is maintained on register, while the

data is maintained on shared/global memory for regional/global

memory. Note that in current ML compilers the multiple consumers

(e.g., operators B and C in Figure.4) may be separated into differ-

ent kernels, causing redundant computations of the producer (e.g.,

operators A in Figure.4).

3.2.2 Kernel Form Illustration. In Figure.7-(a), we illustrate what a

generated kernel looks like with hierarchical data reuse for a sample

subgraph. Here we assume the stitching schemes for the operators

are: regional scheme for reduce.1, global scheme for power.1 and

reduce.2, independent scheme for multiply.1, and local scheme for

other operators.

Figure.7 (b) and (c) show how XLA and AStitch form the kernel

differently for the subgraph. AStitch forms one GPU kernel, while

XLA forms 4 kernels ending with reduce.1, power.1, reduce.2 and

multiply.1. AStitch eliminates 3 kernel launches with fine-grained

data management and multi-level thread barriers, which reduces

CPU-GPU context switch and framework scheduling overhead

(with extra lightweight thread barriers in a kernel). The output

of reduce.1 does not need to be flushed to off-chip memory; it is

buffered on-chip for its consumer to read (i.e., element-level data

reuse). The values of parameter.2 and broadcast.2 only need to be

loaded once from the off-chip memory and are buffered on registers

(i.e., operator-level data reuse), while XLA loads them twice from

the global memory in different kernels.

Additionally, TVMwill form 3 kernels for this case, where power.1

and reduce.2 are merged into one kernel. This results in redundant

computations of power.1. AStitch avoids such redundant compu-

tations. The detailed design optimizations for automatic thread

mapping and stitching strategies will be discussed in Sec.4.3.

3.2.3 Global Barrier. Global stitching scheme requires a global

barrier for all the GPU threads under the following constraints: the

total number of GPU thread-blocks should not exceed the allowable

number that can simultaneously execute on GPU per wave [50].

Otherwise, it will cause dead-locks between active and inactive

thread-blocks. This constraint is met under Sec.3.3 which helps

limit the thread-block number while still retaining high parallelism.

Compared to separated kernels, global stitching inlines the implicit

global thread barriers between kernel calls into a single kernel.

3.3 Adaptive Thread Mapping

As discussed in Sec.2.3.2, state-of-the-art ML compilers lack of

designs to support irregular tensor shapes presented in production
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Figure 7: Execution scheme of a memory-intensive sub-

graph. AStitch reduces kernel launches and off-chip mem-

ory access with hierarchical data reuse. Pr: parameter. A:

add. B: broadcast. R: reduce. D: divide. Pw: power. M: mul-

tiply.
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Figure 8: Task packing and splitting optimization for row-

reduction on GPU. Task mappings in existing work are in

Fig.6.

workloads (Challenge II), causing significant performance issues. To

address this issue, we propose a task packing and splitting approach

based on the SIMT nature of GPU execution to adaptively process

various tensor shapes. Note that what suffer from irregular tensor

shapes are mainly reduce ops, which are the most time-consuming

operators among memory-intensive computations.

Task packing includes two dimensions: horizontal and vertical.

Horizontal packing is to pack multiple small blocks, each of which

processes the reduction of one row, into one large thread block. This
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fixes the small block-size issue shown in Figure.6-(a). For example,

for the case of row-reduction from shape <750000,32> to <750000>

(Figure.6-(a)), we pack 32 small blocks with size of 32 into one

thread-block with size of 1024 to increase parallelism, and every

32 threads in the thread-block process a row. Vertical packing is to

pack tasks of multiple thread-blocks into one to reduce the block

count. This helps pack multiple waves of thread-blocks into one

wave to meet the requirement of a global barrier. The block size

is unchanged in the vertical packing and each thread processes

elements from multiple tasks in order. Figure 8-(a) describes how

the two-dimensional task packingworks to increase GPU utilization

while effectively limiting the block counts per wave.

On the other hand, task splitting is to split the task within one

thread-block into several thread-blocks to increase block count,

in case there is under utilization problem caused by small block

count (Figure.6-(b)). It requires a cross-block reduction between

split blocks for row-reduction execution. Figure 8-(b) describes how

the row-reduction task within one block is split into two blocks via

a cross-block atomic to increase parallelism.

4 COMPILER DESIGN AND OPTIMIZATIONS

It is challenging to apply the optimizations described in Sec.3 au-

tomatically for a given complex memory-intensive subgraph. It is

required to determine the stitching scheme along with thread map-

ping for all the operators just-in-time. However, enumerating the

schemes for each operator results in combinatorial explosion. For-

tunately, we identify two basic characteristics of memory-intensive

operators according to the abstraction of the stitching schemes. We

make a key observation that AStitch only needs to determine the

stitching scheme and the corresponding thread mapping for several

key operators, and these will propagate to all the other operators

in the subgraph. We describe how AStitch enables the proposed

optimizations automatically as follows.

4.1 Stitching Scope Identification

First, we describe how AStitch identifies what operators to stitch

together given a machine learning model. To minimize CPU-GPU

context switch, framework scheduling overhead and reduce off-chip

memory access, AStitch stitches as large scope of memory-intensive

operators together as possible (under resource constraints) for a

given ML computation graph. Note that AStitch is capable to man-

age hardware resources effectively to prevent resource explosion

for larger kernels (Sec.4.4, Sec.4.5).

Given a ML computation graph, AStitch first applies a BFS algo-

rithm to identify memory-intensive sub-graphs automatically. It

then replaces each of the sub-graphs with a new operator, named

stitch op. To further enlarge the stitching scope, AStitch groups

disconnected stitch ops together and forms a larger stitch op, which

we call remote stitching. The process of remote stitching is to tra-

verse all the existing stitch ops and merge two together if they have

no data dependency. A constraint to form a stitch op is that no

cyclic dependence is allowed. AStitch does not merge computations

together if the merging results in a circle. Each of the stitch ops will

be compiled into a CUDA kernel.
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Figure 9: Schedule propagation and data management plan-

ning for the graph topology shown in Figure.7-(a).

4.2 Key Design Observations

We make the following observations in regard to the abstraction of

stitching schemes (Sec.3.1):

Observation-A: If an operator is of local scheme, its thread map-

ping can be determined by propagating from its consumer’s thread

mapping. This is because local scheme indicates element-level one-

to-one dependency. Given the schedule of the consumer op, the

schedule of its producer can be derived directly from the consumer

by element-wise index propagation. For the same reason, if both

an operator and its consumer are all of local scheme, the thread

mapping schedule of this op can be propagated to its consumer.

Observation-B: The patterns of reduce and expensive element-

wise ops followed by broadcast ops need to be supported by either

regional or global scheme because the two patterns induce complex

element-level one-to-many dependencies (Table.1).

4.3 Automatic Compiler Optimization Design

According to these two key design observations, we propose a just-

in-time compiler design that automatically determines the stitching

scheme and thread mapping for each operator. Using the graph

topology in Figure.7-(a) as an example, Figure 9 illustrates how the

compiler works in three steps.

Step 1: dominant identification and op grouping. Accord-

ing to the observations in Sec.4.2, AStitch only needs to determine

the thread mapping of several key operators, and then propagate

them to all the other operators. We name these key operators as

dominant ops. AStitch first identifies several candidates for becom-

ing dominant ops, and eventually identify the final ones with domi-

nant merging.

First, according to observation-B, the light element-wise ops and

the expensive element-wise ops that are not followed by broadcast

are of local scheme by default. The ops that are not of local scheme
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will be considered as the candidates for dominant ops. That means

that reduce and expensive element-wise ops followed by broadcast

are candidates for dominant ops. Here, a special case is the output

of stitch ops (e.g., M.1 in Figure.9), which is also considered as

a candidate dominant op. Under this rule, reduce.1, power.1 and

reduce.2 are candidates for dominant ops in Figure.7-(a).

AStitch then identifies the final dominant ops from the candi-

date dominants, which is referred as dominant merging. If two

candidate dominants connect with each other through ops of only

local scheme, AStitch chooses one as final dominant op, and regards

the other as sub-dominant. Thus we only need to determine the

thread mapping schedule for the dominant op, and can get the the

schedule of sub-dominant through propagation. AStitch prefers to

choose reduction as the final dominant op when merging. This is be-

cause using a time-consuming op like reduction as dominant op to

generate the overall schedule usually leads to better performance.

Finally,AStitchwill form a group for each dominant op, including

all the ops that connect to this dominant under only local scheme.

In this way, different groups are connected with each other through

only dominant and sub-dominant ops. Later, AStitch will propagate

thread mapping within each group, and identify how different

groups communicate with each other by determining the stitching

schemes for dominant and sub-dominant ops.

In Figure.9-1, reduce.1 and reduce.2 are the final dominants. Power.1

(multiply.1) can connect to reduce.1 (reduce.2) through ops of only

local scheme. For example, the path between reduce.1 and power.1 is

add.1 - broadcast.1 - parameter.2 - divide.1. AStitch regards Power.1

and multiply.1 as sub-dominants.

Step 2: adaptive thread mapping and schedule propaga-

tion. AStitch generates the parallel code for each dominant op

according to Sec.3.3, and propagates the thread mapping schedule

within the corresponding group. In this way, we get thread mapping

schedule for all the operators.

Tensor Shape Adaptation. AStitch automatically applies task

packing and splitting for dominant ops according to tensor shapes

and hardware resources. Take row reduction as an example, if the

number of rows to be reduced is smaller than the number of blocks

allowed per-wave, and each row contains a large number of data

items (i.e., larger than 1024), AStitch splits the row to increase

parallelism. Otherwise, AStitch will apply task packing to form

large enough blocks, and limit the block count to be smaller than

the per-wave threshold to meet the requirement of global barrier.

We want to emphasize that the dominant merging in Step-1 can

enable more operator-level data reuse (Sec.3.2.1). For example, in

Figure.7-(a), withoutmerging reduce.2 andmultiply.1 into one group,

broadcast.2 will appear in two groups. This may result in different

thread mapping schedules for broadcast.2 in two groups; thus the

per-thread loaded value of this op cannot be reused between the two

groups due to the schedule incompatibility. Under our dominant

merging of the two groups, broadcast.2 now can be cached on

registers for reuse as the whole group is dominated by the same

thread mapping schedule.

Step 3: Finalization. AStitch determines the stitching schemes

for the dominant and sub-dominant ops in the last step. Note that

other ops within each group are of local scheme, discussed in Step-1.

Different groups connect with each other through dominant and

sub-dominant ops, for which the stitching scheme is either regional

or global.

Regional scheme requires block-level data locality. For an op

whose output is in regional scheme, whenever the op produces a

range of data in a block, its consumers should read the same range

of data within the same block. Otherwise, the scheme should fall

back to global. We apply locality check to identify the stitching

scheme between regional and global.

Passive block-locality checking. Take the example in Figure.7-

(a), we calculate how many continuous elements each of reduce.1,

power.1 and reduce.2 produces per-block, and howmany continuous

elements their consumer requires per-block, respectively. In this

case, only reduce.1 matches block locality and is given regional

scheme for data buffering on the GPU sharedmemory; the other two

are given global scheme for data buffering on the global memory.

Proactive block-locality adaptation. For an op group that only

contains element-wise ops, AStitch proactively adjusts the thread

mapping schedule of this group to match the block-locality with its

producer group. According to how many continuous elements each

thread-block generates by the producer of this group, the thread

mapping schedule can be determined in an element-wise manner

for this group.

In summary, reduce ops prioritize parallelism since they require

more computation. Thus, reduce dominated groupswill perform pas-

sive block-locality checking without adjusting its thread mapping.

On the other hand, element-wise ops typically prioritize locality

due to their low-cost computation. Thus, groups dominated by

them perform proactive block checking to enable more block-level

locality.

4.4 Memory Usage Optimization

It is essential to use GPU shared/global memory moderately, e.g.,

high shared memory usage hurts kernel parallelism. AStitch oper-

ates under the consideration of memory resource limitations and

their impacts on performance. For example, AStitch reuses previous

allocated memory as much as possible to reduce unnecessary mem-

ory allocation requests. AStitch uses dominance tree algorithm[19]

for memory data-flow analysis to maximize the memory reuse for

operators. Additionally, regional scheme requires extra shared mem-

ory usage. If a shared memory request exceeds the hardware limit

for a thread-block, AStitch alters the stitching scheme of dominant

and sub-dominant ops from regional to global one by one within a

stitch op until the memory usage is under the limit.

4.5 Resource-Aware Launch Configuration

AStitch requires a proper GPU kernel launch dimension for which

the thread-block count does not exceed the max block count per-

wave (𝐶𝑏𝑙𝑜𝑐𝑘𝑠−𝑝𝑒𝑟−𝑤𝑎𝑣𝑒 ) to meet the requirement of global bar-

rier. Unfortunately, although AStitch needs the information (e.g.,

𝐶𝑏𝑙𝑜𝑐𝑘𝑠−𝑝𝑒𝑟−𝑤𝑎𝑣𝑒 ) to make thread mapping plan for GPU binary

compilation, it can only be achieved after the compilation. We de-

sign an assume-relax-apply approach to address this issue. The basic

idea is to assume a target 𝐶𝑏𝑙𝑜𝑐𝑘𝑠−𝑝𝑒𝑟−𝑤𝑎𝑣𝑒 before optimization,

then get a relaxed register usage, and finally apply the register usage

limitation with CUDA compiler notations to achieve the target.
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Figure 10: AStitch System Overview.

First, we assume the register usage bound is a very small value

(i.e., 32). Second, we try to relax the bound if possible. The insight

is that, the parallelism may be bounded by shared memory usage

but not register usage, for which we can relax the register usage

bound. We calculate 𝐶𝑏𝑙𝑜𝑐𝑘𝑠−𝑝𝑒𝑟−𝑤𝑎𝑣𝑒 according to the assumed

register usage bound, planned shared memory usage (Sec.4.4) and

specified block size[4]. We specify the block size as the upper bound

that CUDA allows (e.g., 1024) during the above process, as larger

block size results in smaller𝐶𝑏𝑙𝑜𝑐𝑘𝑠−𝑝𝑒𝑟−𝑤𝑎𝑣𝑒 , and in turn results in

smaller global barrier overhead. Then we deduce the max register

usage allowed according to 𝐶𝑏𝑙𝑜𝑐𝑘𝑠−𝑝𝑒𝑟−𝑤𝑎𝑣𝑒 . The max allowed

register usage is the relaxed bound. Finally, AStitch adds annotation

information to apply max register bound when lowering thread

mapping schedule to GPU IR. We do not observe register spilling

problem in our evaluation with this method.

5 IMPLEMENTATION

Figure.10 shows AStitch system overview.

The designs and insights of AStitch can be directly applied on all

the current machine learning frameworks [12, 17, 36] and ML opti-

mization compilers [11, 16, 18, 32, 55] for enhancement. Currently,

we implement AStitch as a TensorFlow add-on. AStitch leverages

TensorFlow built-in XLA engine for the system implementation. It

retains all the optimizations of XLA except fusion strategies and

code generation passes. AStitch accepts the computation graphs

represented in XLA but replaces XLA’s fusion and codegen passes.

We buildAStitch as a stand-alone compiler engine that is portable

to any version of TensorFlow. It leverages the custom graph pass

API of TensorFlow to rewrite computation graph and generate GPU

code for stitch ops. It then leverages custom op API of TensorFlow

to plug stitch ops into the runtime sequence of operators in the

computation graph.

To use AStitch, users only need to specify the path of AStitch

engine along with an environment variable to initialize it. Users do

not need to modify anything in the model script, making AStitch a

very usable machine learning compiler.

Table 2: Workloads for evaluation.

Model Field Train batch-size Infer batch-size

CRNN Images - 1
ASR Speech - 1
BERT NLP 12 200

Transformer NLP 4,096 1
DIEN Recommendation 256 256

6 EVALUATION

In this section, we present the detailed evaluation results using a

single NVIDIA V100 GPU with 16GB device memory with CUDA

toolkit 10.0 and cuDNN 7.6.

6.1 End-to-End Evaluation

Workloads.We use a set of representative memory-intensive ma-

chine learning applications as our evaluation workloads, which

include BERT[21] and Transformer[44] for natural language pro-

cessing, DIEN[58] for recommendation, ASR2[47] for automatic

speech recognition and CRNN[40] for optical character recogni-

tion. These models are widely used in production. The building

blocks of these workloads include perceptron, attention, convo-

lution, RNN, and a broad range of memory intensive operators.

Table.2 summarizes the fields and configurations of the evaluated

applications. All of our workloads’ batch sizes are selected from

real-world production configurations.

Baselines.We compare AStitchwith TensorFlow (v1.15), Tensor-

Flow XLA (v1.15) and TensorRT (v7.0) to demonstrate the benefits

of AStitch. Note that TensorRT is one of the most popular optimizer

for inference. We evaluate the speedup of AStitch by comparing

inference time or the training time of one iteration. We repeat

10 times and use the average performance to validate speedup.

TensorRT does not support training, for which we only evaluate

inference workloads. Ansor (i.e. TVM Auto-scheduler[55]) lacks

support for most models we use. Thus, we present a detailed case

study with Ansor in Sec.6.2. During our test, the accuracy are the

same between AStitch and other techniques.

6.1.1 Overall Results. Figure.11 shows the end-to-end performance

speedup for all workloads, where the execution time of TensorFlow

is normalized to 1. AStitch outperforms all other techniques we

compare. For the inference workloads, compared to TensorFlow,

our approach achieves up to 4.06× speedup, with 2.37× on average.

Compared to XLA, our approach achieves up to 2.73× speedup, with

1.84× on average. Compared to TensorRT, our approach achieves

up to 4.46× speedup, with 2.47× on average. For the training work-

loads (Figure.11b), AStitch shows 1.34× average speedup compared

to TensorFlow and 1.30× to XLA. Note XLA shows performance

degradation for DIEN because it increases CUDA memcpy/memset

activities for this model.

For the inferenceworkloads, we have evaluateAStitch onNVIDIA

T4 GPU, which is widely used for inference in production. Mean-

while, we also evaluate AStitch along with auto mixed precision

(AMP) optimization[2] (Figure.12), which shows speedup similar

with that in Figure.11. This means AStitch is applicable to more

2Porting from https://github.com/espnet/espnet
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Figure 11: End-to-end performance speedup.
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Figure 12: Inference speedup, for which baselines and

AStitch are all with AMP optimization.
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Figure 13: Performance breakdown, without showing the

time of compute-intensive ops.

generations of NVIDIA GPUs and can be used in good combination

with AMP.

For real-world training workloads, they usually contain less

portions of memory-intensive computations than inference, thus

demonstrating comparatively smaller speedup. It is also related to

model structure itself, e.g.,DIEN gains higher training speedup than

BERT and Transformer.

6.1.2 Performance Breakdown. We classify the execution time for

a model into three parts: memory-intensive op execution (MEM),

compute-intensive op execution and non-computation overhead

(OVERHEAD). Note that we do not explore multi-stream execution

and thus the total execution time is the summary of the three parts.

Figure.13 shows the timeline breakdown of MEM and OVER-

HEAD for XLA and AStitch. We collect the metrics with nvprof

Table 3: Kernel numbers. MEM: kernel ofmemory-intensive

ops. CPY: CUDA memcpy/memset calls.

CRNN ASR BERT Transformer DIEN

MEM
XLA 986 496 64 10,132 2,579

AStitch 297 218 26 2,578 811

CPY
XLA 406 372 25 5,579 628

AStitch 388 203 10 1,474 422

CRNN ASR BERT Transformer DIEN0
25%
50%
75%

100%
XLA-occu AS-occu XLA-effi AS-effi

Figure 14: Average parallelism of top 80%memory-intensive

computations. AS: AStitch. Occu: occupancy. Effi: SM-

efficiency.

tool[10]. The total time of MEM and OVERHEAD in XLA is nor-

malized to 1. AStitch significantly reduces both the execution time

of memory-intensive ops (MEM) and non-computation overhead

(OVERHEAD). For example, about 2/3 OVERHEAD time and 1/4

MEM time is saved for Transformer. The decrements of OVERHEAD

mainly comes from kernel call decrements, and MEM benefits from

parallelism increment.

Kernel Call Decrements. Table.3 shows the number of memory-

intensive kernel calls of XLA and AStitch. Thanks to the exhaustive

stitching, 65.7% kernel calls of memory-intensive computations are

saved on average. This leads to much fewer context switches and

therefore reduces the non-computation overhead by a large margin.

Moreover, AStitch reduces 43.2% CUDA memcpy/memset activities

on average to further eliminate non-computation overhead.

Parallelism Increment.We profile the GPU kernels and collect

performance counters to show thatAStitch increases the parallelism

and hardware utilization. We only focus on the top 80% memory-

intensive kernels according to the execution time, which is enough

to represent the overall effect.

We collect two GPU performance counters with nvprof profiling

tool: achieved_occupancy and sm_efficiency. Occupancy[3] shows

whether enough threads are scheduled in parallel, indicating par-

allelism. Sm_efficiency[10] shows the percentage of elapsed cycles

that GPU SM is busy, indicating GPU utilization. The higher the

two metrics, usually indicating the better utilization.

Figure.14 shows the average value of the two metrics for the

top 80% memory-intensive kernels. Thanks to the adaptive thread

mapping, AStitch increases the parallelism and GPU utilization

overall. DIEN shows a little decrements of occupancy with only 2%,

but increases sm_efficiency, indicating higher GPU utilization.

6.1.3 A Comprehensive Case Study. We make a case study with

CRNN to illustrate the performance benefit.

Ablation Study. We enable the optimizations in AStitch one by

one to justify and prove the design choice of AStitch. The baseline

is XLA. We first enable the adaptive thread mapping based on the
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Table 4: Ablation study for CRNN.

XLA ATM HDM AStitch

Time (ms) 23.95 21.98 20.45 17.64
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Figure 15: CRNN occupancy and SM efficiency trend. X axis

indicates memory-intensive ops in descending order of exe-

cution time. Note AStitch has less ops.
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Figure 16: BERT occupancy and SM efficiency trend. Axis

has the same meaning with Figure.15. Note AStitch has less

ops.

Table 5: Total performance counters of all

memory-intensive ops in CRNN. DR_transactions:

dram_read_transactions. DW_transactions:

dram_write_transactions

DR_transactions DW_transactions inst_fp_32

XLA 104,056,236 63,793,690 1,700,113,391
AStitch 104,022,389 16,302,582 1,675,090,268

stitching scope of XLA (ATM). Note that XLA has smaller fusion

scopes than AStitch. Then, we apply exhaustive stitching with hier-

archical data management onto ATM, without dominant merging

(HDM). Finally, we apply the complete function AStitch.

Table.4 shows the ablation result. The adaptive thread mapping

technique based on the fusion plan of XLA contributes 8.9% speedup,

by increasing the parallelism and GPU utilization. The exhaustive

stitching technique, without dominant merging, contributes an-

other 8.2% speedup, by reducing context switch overhead and off-

chip memory traffics, and exploring element-level data-reuse. The

dominant merging technique contributes the final 18.7% speedup,

by enabling op-level data-reuse.

Performance Counter Analysis. We analyze the GPU perfor-

mance counters for memory-intensive ops in three aspects: 1) Par-

allelism. Figure.15 shows the achieved_occupancy and sm_efficiency

of kernels generated by XLA and AStitch. The top time-consuming

kernels of AStitch shows higher parallelism (achieved_occupancy)

and hardware utilization (sm_efficiency) than XLA. 2) Reduced

off-chip memory traffic. Table.5 shows that AStitch reduces the

total GPU global memory load transaction (dram_read_transactions)

and store transaction (dram_write_transactions) than XLA. The re-

duced global memory access is benefited from the hierarchical data

management, which buffers a large portion of intermediate val-

ues on-chip. 3) Reduced instructions. Table.5 shows that AStitch

reduces the fp32 instruction count (inst_fp_32), due to reduced

redundant computations.

6.2 Comparing with TVM Ansor: A Case Study

We present detailed analyses with Ansor[55] on BERT inference

case. Note that Ansor fails to run other models shown in Table.2

due to limited operator support. We run Ansor auto-tuning for 2000

measurement trials and choose the best-tuned model for compari-

son.

The End-to-end evaluation shows that AStitch takes 31.75ms

and Ansor takes 42.02ms for one inference. AStitch achieves 1.3×

speedup.

AStitch forms 53% less GPU kernels for memory-intensive ops

thanAnsor, introducingmuch lower context switch overhead.Mean-

while, AStitch brings 1.4× speedups for all memory-intensive com-

putations comparing with Ansor.

Figure.16 shows the achieved_occupancy and sm_efficiency of

kernels generated by Ansor and AStitch. The top time-consuming

kernels of AStitch shows higher parallelism (achieved_occupancy)

and hardware utilization (sm_efficiency) than Ansor, indicating

better thread mapping ability of AStitch. We also collect the GPU

performance counter of global memory transactions for this case.

The memory-intensive computations in Ansor requires 49,826,724

global memory read transactions and 47,262,821 global memory

write transactions. While the metrics of AStitch is 33,038,694 and

28,432,641 respectively, reducing nearly 40% total off-chip memory

transactions.

6.3 Production Evaluation

AStitch has been deployed into a production cluster and has saved

around 20,000 GPU hours on 70,000 tasks within a week. This

demonstrates the robustness of AStitch. Our previous trial using

XLA fails to produce satisfactory results due to its negative opti-

mization on many models.

The workloads AStitch optimizes effectively on cluster mainly

include transformer based models, recommendation models, and

RNN models. About 23% jobs are distributed jobs, consuming 56%

total GPU time among all machine learning jobs. Others are single

GPU jobs.

The method we estimate the saved GPU hours is that, we run the

deployed model with TensorFlow for several iterations at the begin-

ning, and optimize with AStitch in later iterations. The execution

time is logged in every iteration, except for the first 10 iterations

that include initialization overhead. We compute the total time

saved by multiplying the number of iterations and time saved per

iteration.
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Table 6: Overhead of inlined global-bar.

#block 20 40 60 80 100 120 140 160

Time(us) 2.53 2.53 2.59 2.59 2.66 2.66 2.69 2.72

6.4 Overhead Analysis

6.4.1 OptimizationOverhead. The optimization overhead ofAStitch

comes from the process of exhaustive stitching, thread mapping,

and data management planning. We measure the overhead time

from accepting the input graph until just before lowering LLVM IR

to CUDA binary. We measure the overhead on computation graphs

with 5,000 to 10,000 nodes and the results show that AStitch intro-

duces an overhead of 90s in average where originally XLA requires

30s in average. Just like compilation overhead, the overhead of

AStitch is introduced only once for all following iterations of train-

ing/inference. The overhead, although non-negligible, is still much

more efficient than searching and tuning-based optimizations.

6.4.2 Global Barrier Overhead. Table 6 shows the overhead of

global barrier under different GPU block numbers, with a block

size of 1024. Time is the duration of a kernel consists of only a

global barrier, without any other computation. We measure the

kernel time with nvprof. A V100 GPU can accommodate at most

160 such thread blocks concurrently. Thus the overhead of global

barrier is no more than 2.72us in AStitch, less than the kernel launch

overhead on the order of 10 microseconds.

To justify the overhead of global barrier in the real model, we

remove the global barrier in AStitch and measure the end-to-end

performance of CRNN model. Note that the result is not correct in

such a test. We do not observe obvious performance improvement

when removing the global-bar. It shows that the global barrier is

not the bottle-neck of CRNN case.

7 RELATED WORK

Many current machine learning compiler optimizations mainly

address compute-intensive operations [14, 16, 18, 20, 28, 33, 39, 42,

43, 55], while paying limited attention to the performance issue of

memory-intensive computations. Some compilers [11, 14, 16, 18,

39, 43, 55, 59] apply fusion optimization for memory-intensive ops.

These works lack to tackle the complex dependency problem and

suffer from insufficient fusion. AStitch addresses this problem and

widens the fusion scope upon previous works.

There are some works study about fusion for machine learn-

ing specifically. Li et al.[31] discusses how to fuse operators with

no data dependencies horizontal to improve parallelism. Abdol-

rashidi et al.[13] study about fusion strategy rather than how to

generate efficient kernel for a fusion. Wang et al.[46], Sivathanu

et al.[41] and Ashari et al.[15] explore compute-intensive compu-

tation related fusion optimization. ia et al.[25] tackle the problem

with graph equivalent transformation at operator-level and apply

fusion of compute-intensive operators (i.e., GEMM and Convolu-

tion). However, it does not investigate how to generate efficient

code for memory-intensive computation graphs. HuggingFace[48]

provides APIs to build transformer structures and relies on other

frameworks (e.g., XLA) for kernel fusion. AStitch is orthogonal with

the above studies in that it focuses on generating high performance

GPU kernels given a large group of memory-intensive operators

just-in-time. Niu et al.[34] make studies about fusion optimization

for the inference on mobile devices, while AStitch targets both train-

ing and inference on industrial GPU vendors, showing different

targets and techniques. Zheng et al.[57] explore operator stitching

with shared memory, and use a two-level cost-model based method

for fusion pattern decision and codegen schedule selection. AStitch

enlarges the optimization space with global scheme stitching, and

avoids expensive cost-model based searching thanks to the adaptive

thread mapping ability.

There are ad-hoc optimizations focusing on specific structures,

such as LayerNorm [9, 23], CNNs [26, 52] and RNN cells [22].

DeftNN [24] applies model compression and data fission to speedup

CNN networks. AStitch provides a general JIT compiler rather than

model-specific optimizations. There are some works study about

data preprocessing. POCLib [53] is a high-performance framework

enabling near orthogonal processing on compression for a wide

range of applications. G-TADOC [51, 54] is an efficient GPU-based

text analytic system without decompression. AStitch is orthogonal

to these data processing works and can be combined with them.

There are some works addressing the issue of non-computation

overhead. Ma et al.[32] and Zheng et al.[56] leverage persistent-

thread technique to schedule tasks and reduce kernel launch over-

head, which do not explore how to generate efficient GPU kernel

under a set of to-be-fused memory-intensive operators with com-

plex data dependencies (e.g., one-to-many). Meanwhile, comparing

with [32, 56], AStitch is totally automatic and capable to lever-

age the highly tuned libraries for compute-intensive computations

(cuDNN[8], cuBLAS[7]). Kwon et al.[30] address the framework

overhead with op schedule planning, but not focus on kernel launch

overhead studied in AStitch . CUDA Graph[5] binds, but not fuses,

GPU kernels to reduce kernel launch overhead, which still suf-

fers from off-chip memory traffic. Furthermore, it results in high

GPU memory consumption to store all the graph metadata of every

kernel[35]. AStitch does not have these problems and explores a

larger optimization scope beyond CUDA Graph.

8 CONCLUSION

We reveal that memory-intensive computation is a rising perfor-

mance critical factor in recentmachine learningmodels.We propose

hierarchical data reuse technique to address the complex dependen-

cies to enlarge fusion scope, reducing non-computation overhead.

We propose adaptive thread mapping technique to deal with the

problem of irregular tensor shapes. We develop a JIT compiler

named AStitch integrating the optimizations with high usability.

Results show that AStitch outperforms state-of-the-art compilers

with up to 2.73× speedup. We believe AStitch fills a long-overlooked

gap of machine learning compilers.
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the necessary software components to validate

the main results inAStitch paper. We provide a docker image to ease

the environment setup. The docker image contains the compiled

binary of AStitch, scripts to evaluate the inference and training

performance, and scripts to draw the figures. It requires a Linux

system with NVIDIA driver (capable to run CUDA 10.0) running

on a NVIDIA V100 GPU equipped x86_64 machine to create the

docker container. After launching the docker container, people

can run one script to collect all performance numbers. It requires

some manual finishing to fill the performance numbers into several

python scripts to draw the most important figures in the paper,

showing the speedup of AStitch and breakdown information.

A.2 Artifact Check-List (Meta-Information)
• Binary: The docker image of AStitch.

• Run-time environment: A Linux system with NVIDIA driver

(capable to run CUDA 10.0).

• Hardware: NVIDIA V100 GPU.

• Output: Performance results and figure to show speedup (need

some manual finishing).

• Experiments: For all inference workloads evaluated in the paper,

it contains the evaluation of naive TensorFlow, XLA, TensorRT

and AStitch. For BERT and Transformer training, it contains the

evaluation of naive TensorFlow, XLA, and AStitch.

• How much disk space required (approximately)?: 12GB.

• Howmuch time is needed to prepareworkflow (approximately)?:

30 minutes.

• Howmuch time is needed to complete experiments (approx-

imately)?: It requires dozens of minutes to download the docker

image. You can then run a script once to collect all performance

results. The execution takes about 2.5 hours and you can do some-

thing other while waiting for the results. Finally, it requires about 20

minutes for manual finishing to draw the figures to show speedup

and breakdown.

• Publicly available?: Yes. The docker image is public, which con-

tains the compiled binary. Source code is in the process of open

source, which we will release at early 2022.

• Code licenses (if publicly available)?: Apache-2.0.

• Data licenses (if publicly available)?: Apache-2.0.

• Archived (provide DOI)?: 10.5281/zenodo.5733989

A.3 Description

A.3.1 How to access. We provide the docker image at both docker-

hub and zenodo.

Docker-hub URL: https://hub.docker.com/r/jamesthez/astitch/

tags.

Zenodo URL: https://zenodo.org/record/5733989.

A.3.2 Hardware dependencies. NVIDIAV100GPU equipped x86_64

machines.

A.3.3 Software dependencies. Linux system with NVIDIA driver

capable to run CUDA 10.0.

A.4 Installation

You just need to pull the docker image and launch a container:

docker p u l l \

j ames the z / a s t i t c h : a s t i t c h _ a s p l o s _ a e

docker run \

−−gpus a l l −−ne t = hos t −−p id =hos t − i t \

−−name <your − con t a i n e r −name> \

j ames the z / a s t i t c h : a s t i t c h _ a s p l o s _ a e bash

Alternatively, you can download the tar file of docker image and

import it. The download URL is https://zenodo.org/record/5733989.

You can run the following command to launch the container:

gz i p −d a s t i t c h _ a s p l o s _ a e . t a r . gz

docker impor t − a s t i t c h _ a s p l o s _ a e < \

a s t i t c h _ a s p l o s _ a e . t a r

docker run \

−−gpus a l l −−ne t = hos t −−p id =hos t − i t \

a s t i t c h _ a s p l o s _ a e bash

Use sudo to run docker if necessary.

A.5 Evaluation and Expected Results

We have provided a read-me file on how to reproduce the key

results within our provided docker image. You can find it at /root

after launching the docker container.
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