
206

BladeDISC: Optimizing Dynamic Shape Machine Learning
Workloads via Compiler Approach
ZHEN ZHENG∗, Alibaba Group, China
ZAIFENG PAN†, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China and Alibaba Group, China
DALIN WANG†, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China and Alibaba Group, China
KAI ZHU, Alibaba Group, China
WENYI ZHAO, Alibaba Group, China
TIANYOU GUO, Alibaba Group, China
XIAFEI QIU, Alibaba Group, China
MINMIN SUN, Alibaba Group, China
JUNJIE BAI, Alibaba Group, China
FENG ZHANG, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China
XIAOYONG DU, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, China
JIDONG ZHAI, Department of Computer Science and Technology, Tsinghua University, China
WEI LIN, Alibaba Group, China

Compiler optimization plays an increasingly important role to boost the performance of machine learning
models for data processing and management. With increasingly complex data, the dynamic tensor shape
phenomenon emerges for ML models. However, existing ML compilers either can only handle static shape
models or expose a series of performance problems for both operator fusion optimization and code generation
in dynamic shape scenes. This paper tackles the main challenges of dynamic shape optimization: the fusion
optimization without shape value, and code generation supporting arbitrary shapes. To tackle the fundamental
challenge of the absence of shape values, it systematically abstracts and excavates the shape information and
designs a cross-level symbolic shape representation. With the insight that what fusion optimization relies

∗Zhen Zheng is the corresponding author of this paper (james.zz@alibaba-inc.com).
†Work was done when Zaifeng and Dalin interned at Alibaba Group.

Authors’ addresses: Zhen Zheng, Alibaba Group, China; Zaifeng Pan, Key laboratory of Data Engineering and Knowledge
Engineering (MOE), and School of Information, Renmin University of China, China and Alibaba Group, China; Dalin Wang,
Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information, Renmin University of
China, China and Alibaba Group, China; Kai Zhu, Alibaba Group, China; Wenyi Zhao, Alibaba Group, China; Tianyou Guo,
Alibaba Group, China; Xiafei Qiu, Alibaba Group, China; Minmin Sun, Alibaba Group, China; Junjie Bai, Alibaba Group,
China; Feng Zhang, Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information,
Renmin University of China, China; Xiaoyong Du, Key laboratory of Data Engineering and Knowledge Engineering
(MOE), and School of Information, Renmin University of China, China; Jidong Zhai, Department of Computer Science and
Technology, Tsinghua University, China; Wei Lin, Alibaba Group, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/9-ART206 $15.00
https://doi.org/10.1145/3617327

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

HTTPS://ORCID.ORG/0009-0006-2692-713X
HTTPS://ORCID.ORG/0000-0002-6759-2616
HTTPS://ORCID.ORG/0009-0007-9016-8446
HTTPS://ORCID.ORG/0009-0004-2411-3349
HTTPS://ORCID.ORG/0000-0001-7308-9542
HTTPS://ORCID.ORG/0009-0004-4535-9866
HTTPS://ORCID.ORG/0009-0008-8803-928X
HTTPS://ORCID.ORG/0009-0004-3843-2826
HTTPS://ORCID.ORG/0009-0003-6805-4785
HTTPS://ORCID.ORG/0000-0003-1983-7321
HTTPS://ORCID.ORG/0000-0002-5757-9135
HTTPS://ORCID.ORG/0000-0002-7656-6428
HTTPS://ORCID.ORG/0000-0002-3003-0150
https://orcid.org/0009-0006-2692-713X
https://orcid.org/0000-0002-6759-2616
https://orcid.org/0009-0007-9016-8446
https://orcid.org/0009-0004-2411-3349
https://orcid.org/0000-0001-7308-9542
https://orcid.org/0009-0004-4535-9866
https://orcid.org/0009-0008-8803-928X
https://orcid.org/0009-0004-3843-2826
https://orcid.org/0009-0003-6805-4785
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0002-5757-9135
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-3003-0150
https://doi.org/10.1145/3617327

206:2 Zhen Zheng et al.

upon is tensor shape relationships between adjacent operators rather than exact shape values, it proposes
the dynamic shape fusion approach based on shape information propagation. To generate code that adapts
to arbitrary shapes efficiently, it proposes a compile-time and runtime combined code generation approach.
Finally, it presents a complete optimization pipeline for dynamic shape models and implements an industrial-
grade ML compiler, named BladeDISC. The extensive evaluation demonstrates that BladeDISC outperforms
PyTorch, TorchScript, TVM, ONNX Runtime, XLA, Torch Inductor (dynamic shape), and TensorRT by up
to 6.95×, 6.25×, 4.08×, 2.04×, 2.06×, 7.92×, and 4.16× (3.54×, 3.12×, 1.95×, 1.47×, 1.24×, 2.93×, and 1.46× on
average) in terms of end-to-end inference speedup on the A10 and T4 GPU, respectively. BladeDISC’s source
code is publicly available at https://github.com/alibaba/BladeDISC.

CCS Concepts: • Software and its engineering → Compilers; • Hardware→ Emerging languages and
compilers; • Computing methodologies → Machine learning; • Computer systems organization →
Heterogeneous (hybrid) systems.

Additional Key Words and Phrases: machine learning, tensor compiler, dynamic shape, operator fusion, code
generation

ACM Reference Format:
Zhen Zheng, Zaifeng Pan, Dalin Wang, Kai Zhu, Wenyi Zhao, Tianyou Guo, Xiafei Qiu, Minmin Sun, Junjie
Bai, Feng Zhang, Xiaoyong Du, Jidong Zhai, and Wei Lin. 2023. BladeDISC: Optimizing Dynamic Shape
Machine Learning Workloads via Compiler Approach. Proc. ACM Manag. Data 1, 3 (SIGMOD), Article 206
(September 2023), 29 pages. https://doi.org/10.1145/3617327

1 INTRODUCTION
Machine learning (ML) plays an increasingly important role in data management in recent years.
How to optimize the ML system for efficient data management is becoming an important research
topic [24, 27, 28, 37, 44, 53, 56]. Specifically, with the increasing diversity of data to process and
manage, the need for the optimization of dynamic shape models1 is growing [19, 20, 71]. In recent
years, machine learning compilers [11, 14, 19, 30, 91] have become an indispensable component
for model optimization and deployment. They accept the computation graph of a model and
generate efficient code accordingly on target devices. However, existing optimizing compilers show
limitations for dynamic shape models.
A common practice to deal with dynamic shape is to pad all dimensions of the input tensors

(e.g., input and output sequence lengths) to the max value within each batch. However, there is
an obstacle to applying conventional optimizing compiler techniques on the per-batch padding
approach in many real-world production scenes. Most of the existing ML compilers [11, 14, 30, 91]
are static shape oriented, which rely on dynamic recompilation (e.g., SystemML [29]) to deal with
runtime-encountered shapes. Whenever a new shape comes (e.g., different batch sizes and sequence
lengths after per-batch padding in different iterations), they recompile the graph, resulting in severe
recompilation overhead and memory consumption of compilation caches for the encountered
shapes. For example, we evaluate the overall latency for serving ten BERT-large inferences of
different batch sizes and sequence lengths with TensorFlow, the XLA-optimized deployment spends
20× more of the execution time than naive TensorFlow due to the recompilation of every new
shape. Note that a GPU kernel duration in a common ML program is usually (tens of) microseconds
while the compilation of the kernel could be much longer.

As for just-in-time (JIT) compilation with caching using static shape compilers, it leads to a long
warm-up process due to the frequent compilations and results in frequent jitter of service time for
dynamic shape models. Note that the number of different shapes could be tens of thousands for
1Dynamic shape means the tensor shape could have varied values at runtime, which is common in real production. For
example, the batch size and sequence length of language models [35, 67, 76] vary for different inputs, and the size of input
images for computer vision models [36, 42] also varies.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

https://github.com/alibaba/BladeDISC
https://doi.org/10.1145/3617327

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:3

some production tasks (e.g., 𝑁𝑏𝑎𝑡𝑐ℎ × 𝑁𝑠𝑒𝑞−𝑙𝑒𝑛 for NLP tasks, and 𝑁𝑏𝑎𝑡𝑐ℎ × 𝑁𝑖𝑚𝑔−𝑠𝑖𝑧𝑒 for CV tasks).
Moreover, the compilation cache consumes a large memory footprint. Note that the compilation
cache is usually placed in memory, rather than on disk, to speed up the lookup and function load
process. Finally, there are system expansion requirements in real business to serve the sudden
increase in user requests. The newly expanded machines will suffer from the warming-up process
again, as the in-memory compilation cache is hard to migrate. Sometimes, the delay due to the
warming-up process is intolerable.

The ahead-of-time (AOT) compilation with static shape compilers is also impractical for dynamic
shape models in real production. On one hand, it is not practical to enumerate all possible shapes
and compile them ahead of time due to the combination explosion of different tensor dimensions,
which will cause unacceptable compilation overhead and memory footprint. On the other hand,
bucketing the input tensor shapes into a small number of ranges and padding each dimension to the
max in each range (i.e., cross-batch padding) will lead to massive redundant computations, which
also requires the deployment effort for proper bucketing. An example is that when padding the
input shape of BERT [35] model from <9, 33> to <16, 64>, the inference latency of TensorRT [11]
is increased to 11.84 ms while the original latency without padding is 4.92 ms, causing 2.41×
performance degradation. What is worse, developers do not always know the shape range of
the tensors before the execution (e.g., serving online queries of arbitrary lengths of text). When
encountering a tensor shape out of the specified range at runtime, the above solution will not work.
To tackle the above problems of static shape compilers, this paper proposes BladeDISC, an ML

compiler that supports efficient optimization for dynamic shape models. It enables compiling the
dynamic shape model once and serving any incoming shapes efficiently. The ML tasks could be
per-batch padded (i.e., different batches use different padding), and BladeDISC does not require
recompilation when encountering a new shape from the incoming batched samples. It does not need
cross-batch padding, avoiding many redundant computations. It makes the following contributions:
▶ It is the first work that systematically abstracts, excavates, and represents the hidden shape

constraint information of dynamic shape models. The fundamental challenge of dynamic shape
optimization is the lack of tensor shape values at compile-time. We observe that even though
there is no exact shape value, there is rich shape constraint information hidden in the tensor
computation logic. We systematically abstract the hidden shape information for common graph-
level optimizations into two categories. Then we analyze and excavate the shape information from
the semantics of each operator in the computation graph, and build global shape constraints of the
whole graph (Sec.3.1). Instead of relying on exact tensor shape value for optimizations [14, 30, 91],
we design the optimizations based on the excavated global shape information to cope with dynamic
shapes. We also propose the cross-level shape representation to address the shape information
losing problem across different IR levels and optimization passes (Sec.3.1.3).
▶ It proposes the advanced fusion decision approach for dynamic shape models built on shape

constraint information rather than exact tensor shape value. Operator fusion is one of the most
important graph transformation optimizations for ML models and data management tasks [14, 27,
30, 32, 41, 63, 73, 86, 91]. The state-of-the-art fusion optimizations rely on the exact tensor shape
value for multi-level locality checking (e.g., the locality on registers, the GPU shared memory) to
decide whether operators can be fused together. We make an important observation that what
the locality checking requires is the equality relationship between tensor shapes of producer and
consumer, rather than the shape value itself. With the global shape information, we design the
symbolic dim propagation approach to propagate and check locality information for dynamic shape
fusion decisions (Sec.4.2). We also design the fusion decision pipeline to integrate different fusion
decision strategies together for dealing with the increasingly complex graph (Sec.4.1).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:4 Zhen Zheng et al.

▶ It proposes the adaptive dynamic shape code generation (codegen) approach with the combination
of compile-time and runtime optimizations. The lack of shape information makes it challenging
to generate code that efficiently adapts to various shapes. The codegen schedule2 that is friendly
to one shape may perform poorly for other shapes. We combine the compile-time and runtime
optimizations together to cope with this issue. At compile-time, we exploit instruction interleaving
to help fill hardware pipelines, making the codegen schedule less sensitive to different tensor shapes
(Sec.5.1). BladeDISC also compiles for multi-version of code for each operation to enable runtime
kernel selection for varied tensor shapes, which shares a similar principle with the alternative
kernel selection problems of adaptive query processing [25, 34, 40, 49, 55]. We propose a data-
analysis-based heuristic for runtime kernel speculation for different kinds of operations (Sec.5.2).
▶ It implements a production-ready system to incorporate the optimizations in this paper and

provides a comprehensive evaluation of common ML models. The end-to-end optimization pipeline
(Sec.6.2), along with the runtime abstraction layer design (Sec.6.1), shows how to build a dynamic
shape compiler system with MLIR. We evaluate BladeDISC on a set of commonly used models.
The extensive evaluation demonstrates that BladeDISC outperforms PyTorch [64], TorchScript [4],
TVM Relay VM (Nimble) [71], ONNX Runtime [10], XLA [14], Inductor [21] (dynamic shape) and
TensorRT [11] by up to 6.95×, 6.25×, 4.08×, 2.04×, 2.06×, 7.92×, and 4.16× (3.54×, 3.12×, 1.95×,
1.47×, 1.24×, 2.93×, and 1.46× on average) in terms of end-to-end inference speedup on the A10 and
T4 GPU, respectively. BladeDISC has been deployed in a top cloud service provider’s AI platform
serving massive ML-based data processing and management tasks.

2 BACKGROUND OF DYN-SHAPE COMPILER
2.1 AI Compiler and Limitation on Dyn-Shape
The optimizing compiler approach has been widely used in ML programs in data management
tasks. The compiler accepts the machine learning models written in domain-specific languages
(e.g., PyTorch [64], TensorFlow [22]), and converts them to the binary on target devices. During the
conversion to the target devices, the optimizing compiler is responsible for the microarchitecture-
level planning of thread mapping and data locality management (e.g., tiling of MatMul) for codegen.
Modern ML compilers rely on effective operator fusion to better utilize the hardware resource.

Note that with the evolution of model structures and the growing ratio of computing power to
memory bandwidth, memory-intensive computations have become a rising factor for end-to-end
performance [91]. In particular, the rapid computing power growth and the lagging bandwidth
follow-up make the performance problems of memory-intensive computation even more pro-
nounced3. The state-of-the-art static shape optimizers [11, 91] explore the advanced fusion to
leverage different levels of memories for multi-level intermediate data buffering, named stitch
fusion. The stitch fusion helps to reduce off-chip memory traffic and non-computation overhead
(e.g., framework-level operator scheduling and device-level kernel launching).

To generate the code after stitch fusion, the existing works divide the to-be-fused operators
into several groups, generate the code of each group independently, and finally ‘stitch’ the groups
together with the multi-level data buffering in the same kernel. Specifically, AStitch [91] identifies
the operators sensitive to parallelism in the fusion as dominant ops (e.g., reduce op), and groups
each dominant op with their non-dominant producers together. It then generates the code of each
dominant op and propagates the codegen schedule to other ops within the corresponding group.

2As for codegen, schedule means how the threads are mapped to hardware to process each data item (e.g., tiling size, on-chip
resource management, parallelism configuration).
3The computing power of H100 increases by 3.2× compared to A100, and the bandwidth increases by only 1.9×. Moreover,
H100 supports FP8 tensor computation and further increases the computing power sharply.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:5

The output of each group is buffered on different levels of memory (i.e., register, shared memory,
and global memory) according to the locality between this group and its consumer groups. Finally,
the consumer groups will read from their producer groups’ output buffers. In AStitch, the locality
checking between different groups is done by shape value propagation. For example, when trying
to use the GPU shared memory for intermediate data buffering between two operators, AStitch
checks how many data items the producer generates and how many data items the consumer
requires within each thread block according to static shape values.
The existing static shape ML compilers suffer from either the JIT compilation overhead of

each new tensor shape or redundant computations due to large cross-batch padding. There are
some efforts to address the dynamic shape problem in ML compilers but with some limitations.
Nimble [71] and DISC [94] are proposed to handle dynamic shape models and can apply basic
fusion for memory-intensive operators. However, they suffer from insufficient fusion and inefficient
codegen optimization for both memory-intensive and compute-intensive computations. Their basic
kernel fusion (i.e., fuse element-wise operators into their consumer op) for memory-intensive
computations can not help to fully leverage hardware computing power for many modern model
structures. Besides the kernel execution itself, the non-computation overhead is another problem
caused by insufficient fusion. The massive operators cause massive off-chip memory access and
severe non-computation overhead [91]. TensorRT [11] supports the ranged-shape optimization to
alleviate this problem but requires users to provide the shape range ahead of time, which cannot
work for scenes where the input shape range cannot be obtained before execution.

2.2 Challenges of Dyn-shape Optimization
The absence of shape values makes compiler optimization quite tricky in two aspects.

Graph transformation. One of the most important graph transformations of ML compilers is
operator fusion. The decision of the state-of-the-art operator fusion [91] heavily relies on shape
information. For example, when trying to fuse reduce4 operator with its consumer, for which
the result of reduce is expected to be buffered on the GPU shared memory, the existing stitch
technique requires to guarantee that the number of data items the producer generates and the
consumer requires within each thread block are the same according to static shape values. Existing
solutions do not support to do stitch fusion decisions without static shape information. There are
also some other graph optimizations relying on shape values in existing solutions, like batching
GEMMs together when they have the same shape. Losing the shape values makes these graph
transformation optimization very tough.

Dynamic-shaped Code Generation. Static shape compilers generate efficient schedules for ML
computations according to tensor shapes. As for dynamic shape compilers without shape value at
compile time, it becomes challenging for the codegen to adapt to arbitrary tensor shapes efficiently.
Besides the inefficient codegen schedule problem, dynamic shape codegen also suffers from the
overhead of implicit broadcast. For example, when performing the operation A<?x?> + B<?x?>5,
the compiler should convert it to broadcast(A<?x?>) + broadcast(B<?x?>). This is because the
popular frameworks [22, 64] support the implicit broadcast of operators on tensors with different
shapes. The broadcast introduces notable performance costs due to the index computations. (Note
that integer calculation is very expensive on the GPUs [45].) The broadcast becomes not necessary
if the tensor shapes are the same. However, the dynamic shape scene makes it tricky to identify
shape equality, resulting in the severe overhead of unnecessary broadcast computations.

4The reduce is the operator that reduces an N -D tensor to M-D (N > M), like sum of an array, rather than the collective
communication op.
5A<?x?> means a 2D tensor whose dimension values are unknown at compile-time.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:6 Zhen Zheng et al.

tensor<?x?>

tensor<?x?>

tensor<?x?>

dot

tensor<?x?>

tensor<?>

array[scalar]

reshape① ①

②

③

Fig. 1. Dim equality analyze: 1○ input-output infer; 2○ sibling constraint; 3○ shape value extraction.

3 GLOBAL SYMBOLIC SHAPE INFORMATION
The fundamental source of the challenges described in Sec.2 is that, the shape is unknown at
compile-time. The compilation is a static action, while shape values are only known at runtime
dynamically. Fortunately, we observe that although the accurate shape value cannot be obtained,
a large amount of shape constraint information is hidden in the tensor computation graph. By
excavating the hidden shape constraints, we can develop graph-level optimizations (e.g., operator
fusion in Sec.4) for tensor programs.

In this section, we systematically abstract shape information in a dynamic-shaped tensor compu-
tation graph, and thoroughly dig for the hidden shape constraint information for the graph.

3.1 Global Shape Analysis
3.1.1 Dynamic Shape Information Abstraction. Basically, we analyze and excavate the shape in-
formation from the semantic of each operator in the computation graph, and build global shape
constraints of the whole graph. We abstract the shape information in BladeDISC into two categories:
shape relationship and shape property. A shape consists of a set of dimensions. Thus the shape
information can be represented by fine-grained dim information (i.e., dim relationship and dim
property). For example, if all the dims are equal for two tensors, the shapes are equal.

Shape relationship. indicates the relationship between different tensors, such as tensor shape
equality, equal number of elements between tensors, etc. This information is essential for optimiza-
tions like operator fusion.
We observe that there are two most important dim relationships for modern machine learning

workloads: dim equality and dim collapse equality. Dim equality means that two dims are equal.
Dim collapse equality means that the computation (e.g., multiply, divide, mod) of a group of dims is
equal to another single dim, which is essential to describe tensor shape transformation operations.
For example, when we reshape tensor<?x?> to tensor<?>, the multiplication of the input dims is
the same as the output dim.
Shape property. represents the property of a single tensor, such as whether the number of

elements of a tensor is able to divide by two. It is useful for optimizations like vectorization.
As for dim property, BladeDISC currently analyzes whether a dim is known to be able to divide

by constant values (to guide code generation vectorization). It also analyzes and propagates the
value range of each dim, which is helpful for code generation speculation in Sec.5.2. With the basic
analysis and propagation method in Sec.3.1.2, more dim properties can be easily supported.

3.1.2 Dim Relationship and Property Analysis.
Dim Equality. We analyze the dim equality with 3 basic methods:
1. Input-output infer. This is to extract the dim equality between input and output tensors. For

example, Fig.1 shows the dim equality between input and output tensors of dot operator (i.e.,
matmul op), excavating the equality of M-N dims for matrix multiplication.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:7

abs

tensor<?x?>

dot

⦁ assume know
min value 512

tensor<?x?>

reshape

tensor<?x4>

⦁ constant 4

tensor<?>

⦁ constant factor 4
⦁ min value 2048

tensor<?x4> new-shape
broadcasttensor<1>

tensor<?>

Fig. 2. Dim property analyze and propagation.

2. Sibling constraint. This is to extract the dim equality between several input tensors (or output
tensors) of an op. For example, the contracting dimensions (i.e., dim K of matmul) of the two inputs
of dot operator have the same dim size, which is shown in Fig.1.

3. Shape value extraction. This is to extract the dim equality according to the specified shape value.
For example, some operators require a shape tensor to specify the output shape (e.g., reshape
operator requires to specify the new shape), for which each element in the shape tensor indicates
a dim value of the output tensor. We map the dim value of the output tensor according to each
element of the shape tensor. When two dims of different tensors are mapped to the same value, the
two dims are equal (broadcast and reshape in Fig.2). Fig.1 presents a case of reshape operator
for which the dim of output tensor can be mapped to the shape tensor.

Dim Collapse Equality. BladeDISC identifies dim collapse equality according to two ways. The
first is to trace integer arithmetic operators (e.g., mul, div, mod) for dim values in the computation
graph. The second is to trace shape transformation operators. For example, as for reshape operator
in Fig.2, the multiplication of input tensor dims is the same as output tensor dim.
Dim Property. We analyze dim properties according to known dim properties and algebraic

computing properties. For the example shown in Fig.2, when we reshape a tensor of dim <x,4> to
dim <y>, we can indicate that the dim value y is able to divide by 4. Assuming we already know
that the dim value x is greater than 512, we can indicate that y will be greater than 2048. We further
propagate dim properties of each dim through input-output infer and update dim property when
meeting algebraic computing.

3.1.3 Cross-level Shape Representation. The compiler optimization is usually organized as a pass
pipeline, where every pass alters the IR of the computation graph sequentially. Although the
pipeline manner simplifies the compiler construction, it introduces troubles for shape analysis in
two aspects. 1) Reusability problem. Suppose there are two passes requiring the shape information
for optimization. Since it is difficult to transfer information between passes in existing pipeline
design, the most convenient approach is to re-analyze the shape information independently and
redundantly with overhead. 2) Stability problem. After the processing of some passes, the shape
information that is analyzable in previous passes may be lost in later passes as the graph is changed.
The instability may lead to conflicts between passes due to different shape information. To address
the above problems, we make use of the MLIR’s ability to attach information on data types to
develop the cross-level IR representation for shape information. Specifically, we bind the symbolic
shape information on the data type of each tensor, as is shown in Fig.3. The dimensions of equal
size will share the same dim symbol globally on the IR. We also maintain a dim collapse container
(DimCollapseContainer in Fig.3) for dim collapse equality information, and maintain a set of dim
symbols (SymbolDim in Fig.3) for dim properties.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:8 Zhen Zheng et al.

1 func @main(%arg0: tensor<?x?, [@S0, @S1]>, %arg1: tensor<?x4, [@S1, @S2]>, %arg2: tensor<1>) {
2 %0 = abs(%arg0) : (tensor<?x?, [@S0, @S1]>) -> tensor<?x?, [@S0, @S1]>
3 %1 = dot(%0, %arg1) : (tensor<?x?, [@S0, @S1]>, tensor<?x4, [@S1, @S2]>) -> tensor<?x4, [@S0, @S2]>
4
5 %2 = reshape(%1, %new_shape) : (tensor<?x4, [@S0, @S2]>, tensor<1>) -> tensor<?, [@S3]>
6 %3 = broadcast(%arg2, %new_shape) : (tensor<1>, tensor<1>) -> tensor<?, [@S3]>
7 return %2, %3: tensor<?, [@S3]>, tensor<?, [@S3]>
8 }
9
10 SymbolDim@S0…
11 ……
12 SymbolDim@S3 {
13 constant_factors = [4] // can be divided by 4
14 range = [2048,] // min value is 2048
15 }
16
17 DimCollapseContainer @container {
18 @S3 = mul@S0,@S2
19 }

Fig. 3. Pseudo IR after shape optimization and constraint representation for the example in Fig.2.

3.2 Compile-time Broadcast Elimination
With the help of global shape information analysis, BladeDISC can identify many unnecessary
implicit broadcasts at compile-time. (An implicit broadcast is unnecessary when the source and
destination have the same tensor shape.) By eliminating the unnecessary broadcast, BladeDISC
helps to reduce the unnecessary index calculation. Note that integer index calculation on the GPU
is very expensive [45]. To further eliminate implicit broadcast operators, BladeDISC presents the
multi-version codegen and runtime speculation techniques (Sec.5.2).

4 ADVANCED FUSION DECISION
Operator fusion is one of the most important graph-level optimizations for machine learning jobs.
As modern machine learning graphs become increasingly complex, the fusion decision becomes
more tricky. Pattern-based methods (e.g., TVM [30]) is difficult to achieve large-grained fusion for
complex memory-intensive subgraphs. The memory-intensive oriented optimizer AStitch [91] is
not able to fuse compute-intensive operators. What’s more, the dynamic shape further increases
the difficulty of fusion optimization due to the lack of exact shape value at compile-time, which is
essential to determine the fusibility between producer and consumer in existing fusion solutions.
To support different types of fusions given a complex graph, BladeDISC builds up a pipelined

fusion decision procedure. The basic insight is to form basic fusions first, and then build up larger
fusions by merging the basic fusions. This method is flexible and time-saving. The most complex
fusion pass is stitch-fusion for memory-intensive subgraphs, which relies on exact shape value
at compile-time for data locality checking in AStitch [91]. We propose the dynamic shape stitch
fusion decision approach, with the observation that the locality checking can be done by analyzing
shape constraint information rather than exact values.

4.1 Operator Fusion Pipeline
Rather than forming the final fusion at one time, BladeDISC builds up smaller fusions at each pass
and merges existing fusions to form larger fusions in the next pass in the pipeline. The pipelined
manner breaks the complex decision into a set of smaller jobs, reducing the overall complexity. By
reusing existing basic fusion components in previous passes, it saves a lot of fusion exploration

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:9

Elem-wise fusion Compute-intensive fusion Stitch fusion

G

R

E

E

EE

E

C

G G

R

E

E

EE

E

C

G G

R

E

E

EE

E

C

G

G GEMM op C Constant op E Elem-wise op R Reduce op

Fig. 4. Fusion decision pipeline in BladeDISC. Ops in the same dotted box will be fused together. The color of
the dotted box indicates the fusion type.

time. Meanwhile, the pipeline-based manner is flexible to add new passes for other types of fusion
decisions in the future.

Fig.4 describes the fusion decision pipeline of BladeDISC. Elem-wise fusion pass is similar to the
fusion strategy in XLA [14], which fuses element-wise operators with their consumers together,
ends at reduce op, and stops by compute-intensive ops. Then the compute-intensive fusion pass
fuses compute-intensive operators with their pure element-wise consumers together, including
constant ops. Finally, the stitch fusion pass stitches memory-intensive fusions together to form
larger fusions (details in Sec.4.2).

In BladeDISC, it will fuse element-wise operators with compute-intensive ones only if it reduces
off-chip memory traffics. Take the example in Fig.4, fusing operator G with the following subgraph
reduces the off-chip memory write of G and the following off-chip memory read of E, thus increasing
the overall execution efficiency. Note that not all memory-intensive fusions are better to be fused
with a producer compute-intensive op. This is because compute-intensive and memory-intensive
operators usually require different on-chip resource allocations and thread-level parallelism for
good performance. On the one hand, compute-intensive operators rely on large amounts of on-
chip resource allocations for good performance, leading to limited parallelism. On the other hand,
memory-intensive operators rely on high parallelism for high off-chip memory access efficiency.
Force to fuse memory-intensive operators with compute-intensive ones together may result in
poor memory access efficiency for memory-intensive operators.

4.2 Stitch-fusion Decision
As described in Sec.2, the existing stitch fusion relies on static shape value for data locality checking.
The lack of static shape information makes locality checking and stitch decisions difficult.

We make an important observation that what the locality checking requires is the equality
relationship between dims of producer and consumer, rather than the dim value itself. With the
global shape information (Sec.3), we design the symbolic dim propagation approach for dynamic
shape stitch optimization. The basic insight is to propagate along tensor dims with dim equality
information for locality checking. Based on the example in Fig.5a, the workflow to make stitch
decisions is shown in Fig.5b.
Step 1: Identify dominant operators in the to-be-fused subgraph. Note that we borrow the

basic insight of the grouping and then stitching approach in AStitch [91]. The subgraph will be
divided into several operator groups for code generation. The code of each operator group will be
first generated independently, and then be stitched together with shared memory. The dominant
operator is responsible for such a group of operators (called dominant-group), covering all its
non-dominant producers. As for code generation, BladeDISC would generate the loop structure
of each dominant operator independently, and inline its corresponding producers into the loop

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:10 Zhen Zheng et al.

div

elem-wises

reduce-sum

broadcast reshape

reduce-max

tensor<?x?, [@S0, @S1]>

tensor<?, [@S0]>

tensor<?x?x?, [@S2, @S3, @S1]>

(a) Memory-intensive operators to be stitched together, with 3 outputs.

div

reduce-sum

[… …]

[@S0]

[@S0 , …]

[@S0 , …]
broadcast

[@S0]

[… …]

1. identify
dominant

2. match
group-dim

3. propagate and check locality
and indices coverability

reshape
[@S2, @S3, …] [@S2, @S3, …]

[@S0, …]

(b) Symbolic dim propagation for stitch decision.

Fig. 5. Stitch optimization for dynamic shape scenario.

structure for code generation (called input-inline). The independent loop structure would be finally
stitched together through shared memory in the same kernel in BladeDISC. Specifically, the reduce
operator (reduce-sum in Fig.5b) and the output of the subgraph (reshape in Fig.5b) are regarded as
dominants, just like AStitch [91]. (The broadcast is not dominant as its schedule can be inferred
from reshape with input-inline.)
Step 2: Identify the group-dims for all dominant operators. We introduce two terms for the

technique explanation: group-dim and tile-dim. Take reduce op6 as an example, supposing which
reduces a 2-D tensor (A<m, n>) to a 1-D tensor (B<m>). On the GPU, BladeDISC will use a tile of
threads (usually a thread-block) to reduce the n elements and will form m such thread tiles. The
tile-dim is dim n here, for which is mapped to a tile of threads. The group-dim is dim m, for which is
mapped to different groups of tiled threads.
As a general rule, BladeDISC will first regard the ‘row’ dims of row-reduce operators as the

group-dims, and identify the group-dims of other non-reduce dominant operators according to dim
collapse equality. The other dims are tile-dims accordingly. The insight is that in the same kernel,
all dominants will form the same number of thread tiles, and thus should have the same product
of group-dims. In Fig.5b, BladeDISC identifies that the first dim of reduce-sum is the group-dim,
whose dim symbol is @S0. With shape constraint information, it identifies that @S0 = @S2 × @S3.
Thus it regards the first two dims of reshape as group-dims, according to the requirement that all
dominants should have the same product for group-dims.

6We only discuss row-reduce in this paper.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:11

Step 3: Check the locality between dominant-groups. It propagates between different dominant
operators to identify the group-dims and tile-dims of all passing operators from back to front,
starting from each dominant op and ending when reaching another dominant op. The propagation
rule is according to the per-element data dependency in each dimension between the output and
input tensor for each type of op. For example, for reshape op that reshapes tensor A<x, y, z> to
tensor B<a, z>, output-z is mapped to input-z and a is mapped to {x, y}. When the propagation
reaches the output tensor of a previous dominant op, it will check whether the newly propagated
group-dims and tile-dims of this tensor are the same as that identified in the first step. If the same,
the locality is matched. Otherwise not matched and the stitch decision fails.
Note that we do not see a loop among dominant groups in popular models. If there is a novel

model where the dimension relationship cannot be determined due to a loop, the propagation will
return and BladeDISC will produce split kernels.

Besides the locality propagation, it also requires checking indices coverabilitywithin the dominant-
group, if there are outputs that are non-dominant op. This is because all non-dominant operators’
codegen schedules are inferred from their corresponding dominant operator (through input-inline).
If a non-dominant operator generates a result tensor of the fused kernel, it requires that all the
indices of this result tensor should be able to be inferred from its corresponding dominant. Other-
wise, the data elements at non-inferred indices will not be generated. For example, a single output
tensor of a slice operator is only a part of the input tensor. It means that the indices of a single
output tensor of a slice operator are not able to cover all indices of the input tensor. Thus it does
not allow the input of slice to be a result of the stitch fusion kernel.

We also expand the connotation of stitch optimization to design the CPU stitch optimization. One
difference between GPU and CPU is that the former has an explicitly controlled on-chip memory
(i.e., shared memory), while the latter does not have it. The CPU stitch optimization leverages the
on-chip cache for efficient intermediate data buffering and reuse. The insight is to increase the
temporal locality for intermediate data by rescheduling the computations.

4.3 Compute-intensive Operator Merging
To further increase GEMM efficiency, BladeDISC applies GEMM merging to increase hardware
utilization and reduce kernel launch overhead. Specifically, it supports two types of GEMMmerging
transformation. One is to merge two GEMMs that share the same operand into a single GEMM
(i.e., transform A×B and A×C to 𝐴 × [𝐵 𝐶]). The other one is to merge two GEMMs with the same
shape into a batched GEMM. Note that the dynamic shape scenario makes the latter (i.e., GEMM
batching) difficult because it requires that the shape of the GEMMs should be the same. Thanks to
the shape constraint analysis technique in Sec.3, BladeDISC can successfully identify shape equality
for GEMM batching optimization.

5 DYNAMIC SHAPED CODE GENERATION
We describe how BladeDISC generates efficient code for fused sub-graphs in the dynamic shape
scenario in this section. As discussed before, losing shape values makes it challenging to gener-
ate code with efficient hardware resource utilization. We design the compile-time and runtime
coupled method for shape-adaptive code generation. On the one hand, BladeDISC generates
shape-insensitive schedules at compile-time (Sec.5.1). On the other hand, BladeDISC generates
multi-version of code for both memory-intensive and compute-intensive computations and selects
the best schedule at runtime with a well-designed schedule speculation strategy (Sec.5.2).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:12 Zhen Zheng et al.

1 // thread-local reduce of reduce-sum
2 for idx in (threadid : dim-1-of-arg0 step block-size)
3 intermediate = some-elemwise(arg0[n, idx], ...)
4 sum += intermediate
5 // warp-scope reduce of reduce-sum
6 for ...
7 sum += warp_shuffle(sum, ...)
8 ... // cross-warp reduce of reduce-sum
9 // thread-local reduce of reduce-max
10 for idx in (threadid : dim-1-of-arg0 step block-size)
11 intermediate = some-elemwise(arg0[n, idx], ...)
12 max = maximum(max, intermediate)
13 // warp-scope reduce of reduce-max
14 for ...
15 max = maximum(max, warp_shuffle(max, ...))
16 ... // cross-warp reduce of reduce-max
17 ... // the following computations

(a) Non-interleaved pseudo code for Fig.5a.

1 // thread-local reduce of reduce-sum and reduce-max
2 for idx in (threadid : dim-1-of-arg0 step block-size)
3 intermediate = some-elemwise(arg0[n, idx], ...)
4 sum += intermediate
5 max = maximum(max, intermediate)
6 // warp-scope reduce of reduce-sum and reduce-max
7 for ...
8 sum += warp_shuffle(sum, ...)
9 max = maximum(max, warp_shuffle(max, ...))
10 ... // cross-warp reduce of reduce-sum and reduce-max
11 ... // the following computations

(b) Interleaved pseudo code for Fig.5a.

Fig. 6. Pseudo code of instruction interleaving.

5.1 Shape-insensitive Code Generation for Memory-intensive Subgraphs
As for memory-intensive computations, we observe that the most significant performance factor
is thread-level parallelism (TLP). The difficulty for dynamic-shape codegen is that it is hard to
generate code with optimal TLP without the exact shape values, especially for reduce operators.
Note that most time-consuming fusions of memory-intensive computations are dominated by
reduce operators.

Beneath the surface of TLP, the fundamental optimization target is to fill the massive hardware
pipelines of GPU architecture. TLP is just the basic programming paradigm to fill the hardware
pipelines. Based on this insight, we explore instruction reordering and interleaving in BladeDISC to
help fill hardware pipelines, making the code generation schedule less sensitive to TLP and tensor
shape values.
There are two main instruction interleaving approaches. One is to interleave the codegen

schedule of independent dominant-groups. Fig.6 shows an example, where the control flow and
instructions of reduce-sum and reduce-max operators with their inlined producers are interleaved.
Before interleaving, each of the two reduce operators forms several control-flow structures. The
interleaving optimization merges the independent and identical control-flows, reducing control-
flow overhead and enabling higher ILP. The other is to improve the software pipeline through
instruction interleaving between different loop iterations. BladeDISC unrolls the inner-most loops
and reorders instructions to place independent instructions next to each other as much as possible.
For example, the thread-local reduce for-loop in Fig.6b (line-2) can be unrolled and the instructions
of the unrolled loop can be interleaved to enlarge ILP. Although the loop unroll and interleave is
a traditional technique, we find and demonstrate that it is quite effective to make the kernel less
sensitive to dynamic-shaped values.

5.2 Multi-codegen and Runtime Speculation.
Besides the shape-insensitive codegen, BladeDISC generates multiple versions of code for each ker-
nel. BladeDISC will select the proper version of the kernel at runtime according to the encountered
shape value.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:13

issue Kn

Time

issue Kn+1 issue K…

Execute kernel Kn-1 Execute kernel Kn Execute kernel Kn+1

CPU

GPU

Fig. 7. Overlapped runtime schedule speculation.

Fig.7 shows the basic procedure of kernel execution. CPU speculates the proper schedule and
issues the ahead-of-time (AOT) compiled kernel, and GPU executes asynchronously. The schedule
speculation is small enough (microseconds) to be overlapped with GPU kernel execution. Moreover,
with the shape constraint information, BladeDISC shares the same speculation result for multiple
compute-intensive subgraphs with the same shape.

5.2.1 Multi-codegen forMemory-intensive Subgraphs. As formemory-intensive subgraphs, BladeDISC
generates two versions of kernels for three aspects of GPU architecture.

1) Vectorization. BladeDISC generates a vectorized kernel and a non-vectorized kernel. When it
encounters a tensor shape that is divisible by the vectorization factor at runtime, the vectorized
kernel will be selected. Otherwise, the non-vectorized kernel will be selected.

2) Implicit broadcast. The technique in Sec.3.2 may not be able to eliminate all implicit broadcasts
if some of the shape equality cannot be analyzed at compile-time. BladeDISC generates one more
kernel that assumes to eliminate all remaining implicit broadcasts. The new kernel will be selected
if BladeDISC identifies at runtime that the remaining implicit broadcasts are unnecessary.
3) Reduce operator schedule. As for row-reduce operator, two kernels are generated. One is to

process one row with one thread block, the other is with one warp. When the number of rows is
small or the number of cols is large at runtime, BladeDISC selects the one-block-one-row kernel
for better parallelism and smaller tail latency. Otherwise, the one-warp-one-row kernel is selected
to avoid awaits of threads. We use the experiment-based empirical values as thresholds. We do not
discuss the schedule details for reduce operator because it is not the contribution of this paper.

With the shape information in Sec.3.1.2, BladeDISC can shrink the multi-codegen. For example,
if BladeDISC identifies at compile-time that the dim is divisible by 4, it will only generate the
vectorized code. This helps to shrink compilation time and memory consumption and avoid the
speculation logic at runtime.

5.2.2 Multi-codegen for Compute-intensive Subgraphs. Given a fusion of compute-intensive oper-
ator and its following element-wise operators (called epilogue of compute-intensive fusion), the
performance is dominated by the compute-intensive operator as which usually has much more
computations and off-chip memory accesses than the epilogue when fusing together. Thus we
can focus on the codegen schedule of compute-intensive operators, while the epilogue follows the
schedule of the compute-intensive one.
For compute-intensive operators, different shapes usually require different schedules for good

performance. Some works have studied about expanding the shape range each schedule can support
efficiently [87]. But a single schedule still cannot serve all shapes. Vendor libraries, like cuBLAS [2],
prepare a set of pre-compiled schedules ahead of time and use a rule to switch to different schedules
for each given shape. Due to that cuBLAS is not open-sourced, neither can we borrow the schedule
selection rule nor can we apply any possible customized compute-intensive fusion with cuBLAS.
To tackle this problem, we design the compile-time multi-codegen and runtime speculation

approach for compute-intensive sub-graphs. Given the insight that a range of shapes can share the
same schedule for good performance, BladeDISC identifies and compiles themost common schedules

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:14 Zhen Zheng et al.

Top-N

GEMM
Shapes

Top 97% perf
schedules

Ordered common
schedules & Top-N

Best fit
schedule

Schedule Classifier
e.g. decision-tree

[m1,n1,k1,b1]

[m2,n2,k2,b2]

[m3,n3,k3,b3]

s0
s1
s2

s0
s3
s4
s5

s1
s2
s5

s0
s1
s2
s5
…
s6
…

s0

s0

s1

[m4,n4,k4,b4] s6 s5
… … …

input
samples

class
labels

Fig. 8. Schedule selection of GEMM operators.

for different ranges of shapes at compile-time, and speculates the best schedule for the given shape
at runtime. Note that the target is different from the recent fast-tuning techniques [82, 93], which
are designed to find good schedules at compile-time given specific shapes rather than schedule
selection for any given shapes at runtime.

Due to compilation time and binary size limit, it is infeasible to enumerate all possible schedules
at compile-time for compute-intensive sub-graph codegen. BladeDISC identifies the most commonly
used schedules for various shapes ahead of time. The top-N most common schedules are selected
to be compiled for each compute-intensive sub-graph.
Fig.8 shows the schedule selection approach. For each GEMM shape [M, N, K, batch], we

profile and identify the schedules that achieve 97% performance of its best schedule we measured.
According to the top 97% performance schedules, we get the top-N most commonly used schedules
for all analyzed shapes. Finally, we select schedule from the top-N ones for each shape as the best-fit
schedule according to performance for the shape. Note that the schedule includes the following
aspects: block tile, warp tile, pipeline stages, and TensorCore instruction size.

Given the compute-intensive operator shapes and the corresponding best-fit schedules, we train
a lightweight schedule classifier for runtime schedule speculation. In BladeDISC, we use decision
tree [70] as the classifier according to the insight that similar-sized problems tend to share the
same schedule.
In this work, we use CUTLASS [3] as schedule profiling tool to get the best-fit schedule and

build the dataset for schedule classifier training. CUTLASS is demonstrated to be efficient to
achieve vendor-library level performance for compute-intensive operators [82]. Sec.7.4.1 describes
the details about how we create the dataset to train the schedule classifier to demonstrate the

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:15

User script

Get graph IR

Symbolic shape opt.
(Sec.3)

Dot merge, etc.
(Sec.4.3)

Operator fusion
(Sec.4.1, 4.2)

Code generation
(Sec.5)

IR w/ shape info

IR w/ graph opt.

IR w/ fusion decision

CUDA ROCm X86 AArch64 Others

TensorFlow IO

CPU Abst. GPU Abst. Other Abst.

Runtime
Abstraction

Layer
Isolation

Base IO Context

Shape Optimization passes

Graph Transformation passes

Placement pass

Bufferization passes

Fusion Decision pass

Code Generation pass

Lower to MLIR stablehlo/mhlo Dialect

Lower to LLVM Dialect

Others

Fig. 9. BladeDISC compiler pass pipeline and corresponding optimization techniques.

effectiveness of this approach. With the basic insight, it can also use other profiling tools [30, 93]
to profile and create the dataset. The scale of the dataset could also be customized in practice.

6 SYSTEM DESIGN AND IMPLEMENTATION
We use MLIR as the intermediate representation in BladeDISC. Specifically, BladeDISC makes use
of stablehlo dialect [1] (or its predecessor mhlo dialect [6]) to represent basic ML operators.

6.1 Runtime Abstraction Layer
To isolate the compilation logic from the complex runtime environment of frontends/backends,
we design the runtime abstraction layer (RAL) in BladeDISC. It helps to hide the environment
information for the graph optimization and lets the backends focus on their core optimization logic.
To avoid the interpretation overhead of existing dynamic shape compilers (e.g., the virtual machine
in Nimble [71]), BladeDISC compiles to generate code for both tensor computations on the device
side and runtime activities at the host side. Moreover, holistic code generation may enable more
opportunities for the co-optimization of compilation and runtime.

Fig.9 shows the function of RAL component in the BladeDISC system. The RAL component isolates
the graph optimization from the interaction with various frontends and backends, by providing
the unified interface between tensor computation and the frontends/backends. Specifically, it
provides the TensorFlow IO context components to interact with TensorFlow/Keras hosts, and base
IO context to interact with PyTorch and other hosts. As for the backend side, it provides a set
of device abstractions for device management, including memory management, task scheduling,

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:16 Zhen Zheng et al.

synchronization, and custom calls on popular GPUs and CPUs. The RAL design makes it easy to
support new frontends and backends by providing the frontend IO context and hardware abstraction
implementation, without modifying the core graph optimization logic.

6.2 Optimization Pass Pipeline
Fig.9 shows the optimization pipeline of BladeDISC. The unified interface between BladeDISC
and the frontends context is the IR of stablehlo/mhlo dialect, through RAL. The transformation
from TensorFlow to stablehlo/mhlo dialect representation is mainly borrowed from the TensorFlow
community. The transformation from PyTorch to stablehlo/mhlo is implemented by BladeDISC.
A PyTorch model has first transformed to TorchScript [4] and goes through torch-mlir [13], and
finally converts to stablehlo/mhlo representation. The unified interface between BladeDISC and
the backends context is LLVM IR, through RAL. BladeDISC transforms the computation graph
represented with stablehlo/mhlo dialect to LLVM representation with a set of optimization passes
corresponding to the techniques described in this paper. Each of the passes applies a set of opti-
mizations or transformations on the input graph IR and generates the transformed graph IR. The
pass-by-pass implementation based on common MLIR dialects (e.g., stablehlo Dialect) results in
high reusability from the perspective of both technical principles and implementation.
After lowering the user script written with frameworks like TensorFlow/PyTorch to graph IR

(stablehlo/mhlo), BladeDISC first applies the global symbolic shape optimization in the shape
optimization passes. According to the techniques in Sec.3.1, BladeDISC analyzes global shape
information, binds global dim symbols on tensor types, and adds cross-level shape information on
IR. With the shape information, BladeDISC applies shape simplification optimizations, including
implicit broadcast elimination (Sec.3.2) and constant dimension folding.

After shape optimization, BladeDISC applies a set of graph optimizations in the graph transfor-
mation passes, including dot merging (Sec.4.3), algebraic simplification, layout transformation (e.g.,
using NHWC format to make full use of TensorCore for convolution), etc.
Then the placement pass annotates on the IR to place tensor computations on the GPU, if GPU

is enabled, and shape calculation logic on the CPU. Note that, unlike the static shape compilers
where shape values are constant-folded at compile-time, the dynamic shape compiler needs to infer
the shape value at runtime. As BladeDISC compiles for the logic of not only the device side but
also the host side, it requires representing the buffer allocation/deallocation explicitly on the host
side in IR. The bufferization related passes generate allocation/deallocation operators in the IR and
transform the usage of tensor values to buffer values (MemRef and related Dialects). Note that
the MemRef-based representation generated by bufferization passes presents the memory access
behaviors besides the computation itself, which is different from the IR representations in XLA [14]
and AStitch [91] where only tensor computations are represented in their IR.
The fusion decision pass is followed for the decision of operator fusion. It groups the memory-

intensive operators or compute-intensive operators into fusion operators according to the tech-
niques described in Sec.4.
Finally, given the graph IR with the fusion decision, the code generation pass generates effi-

cient kernels according to the techniques in Sec.5. The computations are transformed into LLVM
representation and compiled into binaries of the target architecture.

7 EVALUATION
In this section, we present the detailed evaluation results for BladeDISC. We compare the perfor-
mance improvement on popular machine learning models with state-of-the-art solutions to show
the superiority of BladeDISC.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:17

Model HuggingFace Name Type Configuration
BERT bert-large-uncased NLP 24 layers, 1024 hidden-dim, 16 heads, 336M parameters

ALBERT albert-large-v2 NLP 24 layers, 128 embed-dim, 1024 hidden-dim, 16 heads, 17M parameters
GPT openai-gpt NLP 12 layers, 768 hidden-dim, 12 heads, 110M parameters
T5 t5-large NLP 24 layers, 1024 hidden-dim, 4096 hidden states, 16 heads, 770M parameters

ViT clip-vit-large-patch14 Vision Text config: 12 layers, 768 hidden-dim, 12 heads
Vision config: 24 layers, 1024 hidden-dim, 16 heads, 14 patch size

Table 1. Information of the benchmark models

7.1 End-to-end Performance
Workloads. We use a set of representative ML models coming from HuggingFace [79] as our
evaluation workloads, including BERT [35], ALBERT [50], GPT [66], ViT [36], and T5[67]. Note
that HuggingFace is one of the most popular open-sourced model hubs. These models are widely
used for language processing and computer vision programs. The detailed information of these
models is shown in Table.1. The evaluated batch sizes are 1 and 16. For the language models (i.e.,
BERT, ALBERT, GPT, and T5), the input sequence length is 64. For the computer vision model (i.e.,
ViT), the height and width of the input images are both 224, and the number of channels is 3. These
input settings are common for industrial scenarios. We enable the auto-mixed-precision (AMP) [59]
for the evaluations of all models and all techniques to demonstrate that BladeDISC works well
together with AMP.
Baselines. We compare BladeDISC with naive PyTorch framework [64] and a wide range of

optimizers including TorchScript [4], TVM Nimble [71], ONNX Runtime [10], XLA [14], PyTorch
Inductor [21], and TensorRT [11].
TorchScript integrates nvFuser [16] to support the basic operator fusion on the GPU. As for

Nimble, we use both AutoTVM [31] and Ansor [88] to tune the performance with 20,000 steps
for each model, as suggested in their documents. We pick the best codegen schedule among the
tuning results. We use commit (15e18) of TVM [30]. ONNX Runtime [10] converts PyTorch models
into ONNX IR and applies various graph optimizations. The version of ONNX Runtime we use
is 1.13.1. XLA [14] is a static shape ML compiler that applies operator fusion and many other
graph transformations. Note that all the models in our evaluation have equivalent TensorFlow
and PyTorch implementations in HuggingFace. Inductor [21] is the native optimizing compiler
introduced in PyTorch 2.0 [19]. It automatically converts PyTorch models into Triton [74] codes on
the GPU, supporting both static shape and dynamic shape compilation. However, in dynamic shape
mode, Inductor cannot effectively excavate the shape relationship between tensors thoroughly
and lacks advanced stitch fusion optimization. It also suffers from inefficient codegen without
shape value. We present the results of Inductor in both static shape (Inductor-static) and dynamic
shape (Inductor-dynamic) modes. TensorRT [11] is provided by NVIDIA to optimize ML models
on its GPUs. As mentioned in Sec.2, TensorRT only supports ranged shapes. We observe the
abnormal performance of the ranged optimization of TensorRT (Sec.7.1.4) and thus use static shape
optimization for the end-to-end comparison. In this way, we can also compare dynamic-shaped
BladeDISC with the state-of-the-art static-shaped optimizer. We use TensorRT 8.2.3.
Testbed. We evaluate BladeDISC and the baselines on an NVIDIA A10 GPU and a T4 GPU,

respectively. The host-side CPUs are Intel(R) Xeon(R) Platinum 8369B. NVIDIA A10 and T4 GPUs
are the most popular NVIDIA accelerators serving inference tasks currently. The PyTorch and
TensorFlow versions are 2.1.0 and 2.8.0 in our evaluation. The CUDA toolkit version we use is 11.7,
and the cuDNN version is 8.5.0. The operating system is Ubuntu 22.04.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:18 Zhen Zheng et al.

Evaluationmetrics.We compare BladeDISC and the baselines by evaluating the model inference
(or training) latency of one iteration. We repeat 1,000 times of inferences (or training iterations)
after warming up and take the average value of latency. During our test, the accuracy is the same
between BladeDISC and other techniques.

7.1.1 Performance on the GPU. Fig.10 shows the performance speedup of BladeDISC over PyTorch
and other techniques on the A10 GPU for the five benchmark models. The execution time of
PyTorch is normalized to 1. We also present the average speedup of these five models in the right
part of the figure. The performance of Nimble on ViT is absent, as Nimble fails to convert the
model into Relay IR. Compared with PyTorch, TorchScript, Nimble, ONNX Runtime, and TensorRT,
BladeDISC achieves up to 6.95×, 6.25×, 4.08×, 2.04×, and 4.16× speedups, respectively. The average
speedups are 3.54×, 3.12×, 1.95×, 1.47×, and 1.46×, respectively.
Fig.10 shows the performance speedup of BladeDISC and other techniques over PyTorch on

the A10 and T4 GPU for the five benchmark models with different batch sizes. We also present
the average speedup of these five models in the right part of the figure. Some bars are missing
in the figure due to the inability of corresponding technologies to optimize the corresponding
models. For example, TVM Nimble fails to convert the ViT model into Relay IR. It shows BladeDISC
overall outperforms existing optimizers. Compared with PyTorch, TorchScript, TVM Nimble, ONNX
Runtime, TensorRT, XLA, Inductor-static, and Inductor-dynamic, BladeDISC achieves up to 6.95×,
6.25×, 4.08×, 2.04×, 4.16×, 2.06×, 2.58×, and 7.92× speedups, respectively. The average speedups
are 3.54×, 3.12×, 1.95×, 1.47×, 1.46×, 1.24×, 1.43×, and 2.93×, respectively.
The performance benefit of BladeDISC mainly comes from the effective dynamic shape fusion

and shape-adaptive code generation, which helps to reduce off-chip memory access and the non-
computation overhead. We present the breakdown analysis in Sec.7.3.
The performance benefit of most optimization techniques with the batch size of 1 is greater

than 16. This is because, for smaller batch sizes, memory-intensive operations account for a larger
proportion of the end-to-end time. Compared with compute-intensive operations, the optimization
potential for memory-intensive operations is larger, which is shown in the breakdown in Sec.7.3.

The poor TensorRT performance for the GPTmodel comes from its inefficient fusion and codegen.
The overall execution time (kernel number) of memory-intensive computations for GPT is 699.30us
(116) with BladeDISC and 1596.52us (164) with TensorRT. The overall execution time of compute-
intensive computations for GPT is 447.71us with BladeDISC and 615.23us with TensorRT. Thus
TensorRT has more kernel execution time and more non-computation overhead.

7.1.2 Performance on X86 CPU. We evaluate PyTorch, ONNX Runtime, and BladeDISC on the
Intel(R) Xeon(R) Platinum 8369B CPU with one-thread enabled. As the computing power of the
CPU is much lower than the GPU, we choose a lighter version of ALBERT [50] (albert-base-v2
from HuggingFace [79], with 11M parameters). Compared with PyTorch and ONNX Runtime,
experiments show that BladeDISC exhibits 1.72× and 1.25× speedup, respectively.

7.1.3 Training Performance. We use DeePMD [77] model and dataset to show the training perfor-
mance of BladeDISC on an A10 GPU. DeePMD is a popular AI-for-science model to perform molec-
ular dynamics. Experimental results show that compared with TensorFlow, BladeDISC achieves
1.32× and 1.24× speedup on the A10 and T4 GPU, respectively. We also evaluate the training per-
formance of XLA [14] to compare the performance of BladeDISC with static-shaped optimization.
Experimental results show that compared with XLA, BladeDISC achieves the speedup of 1.03×
on the A10 GPU and 0.98× on the T4 GPU, meaning that the performance of BladeDISC on some
training tasks is comparable to or even better than the static compiler.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:19

BERT ALBERT GPT T5 ViT Average0
2
4
6

Sp
ee

du
p

1. PyTorch
4. ONNX Runtime
7. Inductor-static

2. TorchScript
5. TensorRT-static
8. Inductor-dynamic

3. TVM Nimble
6. TensorFlow XLA
9. BladeDISC

(a) Speed up over PyTorch eager on an A10 GPU with batch size of 1.

BERT ALBERT GPT T5 ViT Average0
1
2

Sp
ee

du
p

(b) Speed up over PyTorch eager on an A10 GPU with batch size of 16.

BERT ALBERT GPT T5 ViT Average0
2
4
6

Sp
ee

du
p

(c) Speed up over PyTorch eager on a T4 GPU with batch size of 1.

BERT ALBERT GPT T5 ViT Average0
1
2
3

Sp
ee

du
p

(d) Speed up over PyTorch eager on a T4 GPU with batch size of 16.

Fig. 10. End-to-end Performance of BladeDISC and baselines. The missing bars indicate the corresponding
technologies fail to optimize the models in our evaluation.

7.1.4 TensorRT Ranged-Opt Abnormal Performance. We evaluate the performance of TensorRT
ranged shape optimization with HuggingFace BERT-large model. We give min-shape, max-shape
and optimal shape as <1x16>, <4x256> and <2x64> respectively. It means the batch size ranges from
1 to 4, and sequence length ranges from 16 to 256, with the optimal <batch-size, seq-length> as
<2x64>. We optimize the model with both the official TensorRT Python API [12] and BladeDISC, and
compare the performance of different shapes in the shape range on an A10 GPU [7]. The evaluation
results show that the performance of TensorRT ranged-opt is very unstable. Specifically, when batch-
size is 1 and sequence-length is 256, TensorRT shows a very severe negative optimization (−26.4×
worse than naive PyTorch baseline), for which the performance of naive PyTorch, TensorRT and
BladeDISC are 25.33ms, 668.68ms, and 4.83ms respectively. As the detailed techniques of TensorRT
are close sourced, it is hard to figure out the exact reason for the abnormal performance. With Nsight
Compute profiling tool [8], we notice that the TensorRT optimized kernels have unusually large
launch dimensions, while the output of the model is verified to be correct. From this observation,
one possible reason is the unreasonable padding on tensors, due to the insufficient processing of
tensors of unknown shapes.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:20 Zhen Zheng et al.

7.2 Comparison with Library-based Solutions
In this section, we compare the performance of BladeDISC with library-based solutions (i.e.,
FasterTransformer [17] and FlashAttention [33]) on BERT model. Library-based solutions usually
target models with fixed structures and require users to rewrite the model relying on the library
interfaces. Compared to them, compiler-based solutions have two key advantages. First, compilers
can optimize the model automatically without heavy human effort. This is especially beneficial
to companies using a large number of models, for which manually rewriting all the models are
impractical. Second, compilers exhibit higher flexibility than libraries. For example, if users want to
use non-standard models, they cannot use the interfaces provided by FasterTransformer to achieve
high performance. By contrast, compilers can optimize them adaptively.

7.2.1 Comparison with FasterTransformer. FasterTransformer is a highly optimized transformer
library on the GPU. The per-batch padded seq-length is 64 for the evaluation of this sub-section. We
utilize the BERT interface provided by FasterTransformer to evaluate its performance on the A10
GPU. Compared with the HuggingFace baseline, FasterTransformer BERT achieves 6.60× and 1.96 ×
speedup for batch sizes 1 and 16, respectively. On the other hand, using BladeDISC to automatically
optimize the HuggingFace BERT brings 6.55× and 1.71× speedup for batch sizes 1 and 16. This means
that BladeDISC can achieve comparable performance to the state-of-the-art manually optimized
solution. When enabling the Effective Transformer [15] (a transformer-specific optimization) for
the ragged input (i.e., samples have different lengths in the same batch), FasterTransformer achieves
1.98× and 2.36× speedup for batch size 16 when the average seq-length is 48 and 40, respectively.
Effective Transformer removes and restores padding before and after attention calculation, which
is orthogonal to the fusion and code generation techniques of BladeDISC and could be applied
simultaneously in practice. Besides, although FasterTransformer provides the interface of their
GPT, T5, and ViT models, we find they do not work for the models we use. This demonstrates that
as a library, FasterTransformer suffers from inflexibility.

7.2.2 Combination with FlashAttention. FlashAttention [33] provides a new efficient attention
algorithm that reduces the HBM read/write transactions significantly, especially when the sequence
length is large. FlashAttention is orthogonal to BladeDISC, as users can replace the attention
computation with FlashAttention and then utilize BladeDISC to further optimize the model.
PyTorch 2.0 [19] provides the interface to call the FlashAttention function, which allows the

developers to rewrite the model script with this API manually. However, HuggingFace [79] does
not rewrite their models to use this interface currently. Hence, we manually replace the attention
part of BERT in HuggingFace with the FlashAttention-enabled interface.

To show the advantage of FlashAttention, we use a large sequence length of 512. Experimental
results on the A10 GPU show that compared with the original model, enabling FlashAttention
optimization brings 1.29× and 1.64× end-to-end speedup for batch sizes of 1 and 16, respectively.
On the other hand, using BladeDISC separately brings 3.87× and 1.48× speedup for batch sizes of 1
and 16. By further combining FlashAttention and BladeDISC, we finally achieve 4.72× and 1.92×
speedup over the original model for batch sizes of 1 and 16. This is because besides the attention
part, BladeDISC further optimizes the memory-intensive computations.

7.3 Breakdown Analysis
7.3.1 End-to-end Performance Breakdown. Fig.11 shows the performance breakdown of PyTorch
and the dynamic shape optimizers, i.e., TorchScript, TVM Nimble, ONNX Runtime, Inductor-
dynamic, and BladeDISC. The GPU kernels launched during the execution of a model are divided
into two categories: memory-intensive and compute-intensive kernels. Fig.11a and Fig.11b show

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:21

Subgraph BladeDISC Latency (us) BladeDISC #Kernel Torch Latency (us)

LayerNorm 32.68 (w/o stitch) 3 21.0615.70 (w/ stitch) 1

Softmax 33.40 (w/o stitch) 3 16.0512.37(w/ stitch) 1

Table 2. BladeDISC optimization on memory-intensive subgraphs, given input tensor shape of <1024,1024>.

the execution time proportion of memory-intensive and compute-intensive kernels, respectively.
The proportion is figured out by dividing the kernel execution time by the end-to-end inference
latency of PyTorch.

Take BERT as an example. As for the overall memory-intensive computations, BladeDISC signifi-
cantly boots the execution with speedups of 9.49×, 8.65×, 5.30×, 2.61×, and 8.67× compared with
PyTorch, TorchScript, Nimble, ONNX Runtime, and Inductor-dynamic, respectively. The perfor-
mance benefit mainly comes from stitch fusion optimization (Sec.4) and dynamic shape adaptive
code generation (Sec.5). The stitch fusion helps to leverage on-chip memory to buffer intermediate
data and reduce off-chip memory access. The dynamic shape adaptive code generation helps to
generate more efficient schedules to better utilize the hardware computation resource. As for the
overall compute-intensive computations, BladeDISC achieves 1.18×, 1.25×, 1.20×, 1.14×, and 2.82×
speedup compared with PyTorch, TorchScript, Nimble, ONNX Runtime, and Inductor-dynamic, re-
spectively. The performance benefit mainly comes from GEMMmerging (Sec.4.3) and multi-version
code generation (Sec.5.2). Specifically, with the help of GEMM merging, BladeDISC reduces the
number of GEMM kernels from 193 in PyTorch, TorchScript, Nimble, and ONNX Runtime to 145.
The larger GEMM shapes after merging help to increase hardware utilization. We find that for
Inductor-dynamic, the latency of compute-intensive operations is even larger than naïve PyTorch.
This is because Inductor-dynamic selects the unsuitable GEMM schedules. Besides the more efficient
GPU kernels of both memory-intensive and compute-intensive computations, the efficient fusion
in BladeDISC also significantly reduces the kernel numbers by 68.20%, 62.76%, 61.45%, 59.54%,
and 47.52% compared with PyTorch, TorchScript, Nimble, ONNX Runtime, and Inductor-dynamic,
respectively. The reduced kernel number results in significantly smaller framework-level operator
scheduling and hardware-level kernel launching overhead.

7.3.2 Memory-intensive Subgraph Analysis. Table.2 shows the performance of two commonmemory-
intensive subgraphs in modernMLmodels. It shows that the stitch fusion optimization in BladeDISC
significantly boosts the performance of both LayerNorm and Softmax computations by 2.08× and
2.70× speedup respectively. It also reduces the overall kernel number. Specifically, BladeDISC also
outperforms the hand-written PyTorch op implementation of the two subgraphs, by 1.34× and
1.30× speedup respectively.

7.4 Schedule Speculation Analysis
We evaluate the effectiveness of schedule speculation for GEMM schedule selection in this section.

7.4.1 Dataset Creation for Building Decision-tree. To build the decision-tree for GEMM schedule
runtime speculation, we measure and create a dataset containing more than 100,000 items of GEMM
performance of different shapes under different schedules. We use the CUTLASS [3] profiling tool
to measure GEMM performance and create the dataset. Specifically, the M, N, and K dimensions of
GEMM shape range from 256 to 2048, and the batch dimension of GEMM shape ranges from 1 to
128, which are common shape ranges of typical GEMM computation in popular ML models. To

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:22 Zhen Zheng et al.

BERT ALBERT GPT T5 ViT0
20
40
60
80

100
M

em
or

y-
in

te
ns

iv
e

Ti
m

e
Pr

op
or

tio
n

(%
)

1. PyTorch
4. ONNX Runtime

2. TorchScript
5. Inductor-dynamic

3. TVM Nimble
6. BladeDISC

(a) Execution time proportion of memory-intensive kernels.

BERT ALBERT GPT T5 ViT0
20
40
60
80

100

Co
m

pu
te

-in
te

ns
iv

e
Ti

m
e

Pr
op

or
tio

n
(%

)

(b) Execution time proportion of compute-intensive kernels.

BERT ALBERT GPT T5 ViT0
500

1000
1500
2000
2500

Ke

rn
el

s

(c) Number of launched kernels.

Fig. 11. Performance breakdown of PyTorch, TorchScript, TVM Nimble, ONNX Runtime, Inductor-dynamic,
and BladeDISC on the GPU. The value in (a) and (b) are figured out by dividing the kernel execution time by
the end-to-end inference latency of PyTorch.

guarantee the data diversity, we evenly sample the value in the above shape range of M, N, and K
dimensions for which taking the remainder of 256 equals 0, 1, 2, 4, 8, 16, 32, and 64 respectively.
This makes the items in the data cover all possible alignments on popular hardware for ML model
acceleration. We create the decision-tree classifier on the above dataset according to Sec.5.2.2 for
GEMM schedule runtime speculation.

To create the dataset, we only use column-major data layout for the performance evaluation of
different schedules given each GEMM shape. We have compared the performance of each schedule
under different layouts given a fixed GEMM shape. Extensive evaluations on a large range of
GEMM shapes show that, even though different layouts with the same schedule show different
performances, the schedule with the best performance under different layouts is usually the same.
Thus, data layout is not essential to select the schedule with the best performance.

7.4.2 Schedule Speculation Accuracy. We evaluate the speculation accuracy of the decision-tree
classifier. We use 5 schedules as the targets of the classifier. With the top schedule selection approach
in Sec.5.2.2, the top-5 schedules are shown in Table.3. It shows that the proportion of occurrences of
the top-5 schedules to all original schedules is 95.72%, which shows that the speculation target has
high coverage of the possible GEMM schedules. To evaluate the classifier, we use 80% data in the

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:23

𝐶𝑚 𝐶𝑛 𝐶𝑘 𝑠𝑡𝑎𝑔𝑒𝑠 𝑊𝑚 𝑊𝑛 𝑊𝑘 𝐼𝑚 𝐼𝑛 𝐼𝑘 𝑟𝑎𝑡𝑖𝑜

128 128 32 3 2 2 1 16 8 16 68.63%
128 256 32 3 2 4 1 16 8 16 16.08%
128 256 32 2 2 4 1 16 8 8 7.21%
128 128 32 2 2 2 1 16 8 8 2.80%
64 128 32 2 2 2 1 16 8 8 1.00%

Table 3. The top-5 schedules of GEMM classifier targets. 𝐶𝑚/𝑛/𝑘 : the tiling size of block size on M/N/K
dimensions. 𝑆𝑡𝑎𝑔𝑒𝑠 : pipeline stages.𝑊𝑚/𝑛/𝑘 : the warps tiling on M/N/K dimensions. 𝐼𝑚/𝑛/𝑘 : Tensor Core
instruction size on M/N/K dimensions. 𝑅𝑎𝑡𝑖𝑜 : the proportion of occurrences to all original schedules.

dataset described in Sec.7.4.1 as training data and others as testing data. The decision-tree classifier
shows 92% accuracy on the testing data. We collect the ratio of the achieved performance of the
predicted schedule to the highest performance of the best schedule of each testing data. It shows
that the mean ratio is 99%, and 95.2% GEMM shapes achieve at least 95% of the best performance
with the predicted schedule. This means the classifier is effective to get a good schedule for given
GEMM shapes for runtime schedule speculation.
We observe that GEMM shapes beyond a threshold usually use a converged schedule, which

best matches the hardware characteristics of multi-level memory bandwidth (e.g., global memory,
L2 cache, shared memory, and registers) and computing power under enough matrix multiplication
computations. In our practice, the GEMM shapes larger than the profiling range during inference
usually fall into the converged schedule and result in a good performance. Meanwhile, a too-small
GEMM shape usually does not require a perfect schedule as the absolute difference is very small
among common schedules. Thus the schedules of the GEMM shapes smaller than the profiling
range usually do not significantly impact the end-to-end absolute performance.

8 RELATEDWORK
Operator fusion. Operator fusion optimization is extensively studied for data management and
ML programs. Tupleware [32], SystemML [27], Weld [63], Tuplex [73], Kasen [86], and FuseME [41]
study the fusion optimization on CPU architecture for data management and ML algorithms. They
do not study fusion optimization on GPUs, nor do they study dynamic shape optimization for ML
programs. Some works study the code generation of compute-intensive operators and support the
fusion of element-wise operators with their producer of the compute-intensive operator or consumer
of reduce operator [26, 30, 37, 75, 88, 93], for which the target is static shape ML models. Some
works [61, 89, 90] study holistic operator fusion and pipelined scheduling on heterogeneous systems
for pipelined workloads like face detection. Some recent works study the fusion optimization of
memory-intensive operators [14, 84, 91, 92] for static shape ML models, especially the stitch fusion
optimization [91] leveraging the hierarchical GPU memory for intermediate data buffering. Some
works [38, 52, 80] apply fusion optimization in data management tasks like data analytics and
query processing on the GPU. None of the above works address the dynamic shape problem for ML
programs and will suffer from severe compilation overhead for dynamic shape workloads. There
are some works focusing on operator merging of compute-intensive operators [46, 72]. The GEMM
batching optimizing in BladeDISC relies on the shape constraint analysis in dynamic scenarios,
differing from existing works.

Solutions to dynamic shape models. A practice to alleviate the dynamic shape problem for ML
programs is dynamic recompilation [9, 14, 29, 68] for each encountered shape, which suffers from
severe compilation overhead and frequent jitter of service time due to the frequent compilation. It

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

206:24 Zhen Zheng et al.

also cannot meet the system expansion requirement due to the long warming-up process. Moreover,
it suffers from a huge compilation cache caused by the large shape numbers. The ranged-shape
AOT optimization [11] is another approach to alleviate the problem, for which users can provide a
range of input tensor shapes rather than a single static shape. However, this approach cannot work
for scenes where the input shape range cannot be obtained before execution.

Recently, there are some optimizing compilers supporting dynamic shape ML models. PyTorch
Inductor [21], Nimble [71], and DISC [94] are proposed to handle dynamic shape models and apply
basic fusion for memory-intensive operators. Instead, BladeDISC proposes the advanced fusion for
dynamic shape models. Meanwhile, BladeDISC proposes the compile-time and runtime combined
code generation approach that adapts to various shapes efficiently. DietCode [87] focuses on single
compute-intensive operator optimization for dynamic shape scenes, rather than memory-intensive
operator optimization with the end-to-end flow. IREE [5] focuses on embedded systems and is in
the early stage to support server-side devices.

Machine learning systems.Many recent works attempt to improve the ML model performance
from different aspects. There are some works proposing efficient runtime systems to serve inference
queries. Triton Inference Server [18] and TensorFlow-Serving [62] are widely used serving systems
in production. Serverless is also an effective serving option for ML workloads [24, 81]. These works
are on top of the model execution engines (e.g. PyTorch [64] and ML compilers) and do not focus on
the optimization of ML models execution on microarchitecture, which are orthogonal to BladeDISC.
Many works [23, 47, 53, 54, 56–58, 69, 78] are proposed to optimize the large-scale training of ML
models. They do not study compilation optimization for dynamic shape ML workloads. ORCA [85]
explores token-level batching to optimize transformer-based generative models specifically, which
avoids wasted computation by avoiding padding. It does not address the dynamic shape problem of
general ML models besides transformer-based generative models. Meanwhile, it does not focus on
the fusion and code generation optimization of the per-token computation, for which BladeDISC
could be applied on top of the ORCA techniques to optimize the batched tokens from the technical
point of view.

Data management and optimizing compiler. The optimization plan switching during runtime
is extensively studied for adaptive query processing [25, 34, 40, 43, 49, 55, 83], to which BladeDISC
shares a similar principle of multi-kernel/plan generation and switching. BladeDISC studies the
new problem of ML programs and generates and selects the multi-kernel with a set of new methods.
Leveraging compilation technologies to optimize queries is an enduring topic in data management
areas [39, 40, 49, 60, 65]. LingoDB [48] utilizes MLIR [51] to build a layered query compilation
stack. BladeDISC also uses MLIR to build the compilation pass pipeline. Instead of database queries,
BladeDISC focuses on compilation optimizations for ML models.

9 CONCLUSION
In this paper, we design and implement an industrial-grade dynamic shape compiler system, named
BladeDISC. To tackle the fundamental challenge of the absence of shape values, we systematically
abstract and excavate the shape information and design a cross-level symbolic shape representation.
With the insight that what fusion decision relies upon is the shape relationship, we propose the
dynamic shape fusion approach with shape information propagation. We design the compile-time
and runtime combined approach to generate efficient code that adapts to arbitrary tensor shapes.
Results show that BladeDISC outperforms PyTorch, TorchScript, TVM, ONNX Runtime, XLA, Torch
Inductor (dynamic shape), and TensorRT by up to 6.95×, 6.25×, 4.08×, 2.04×, 2.06×, 7.92×, and
4.16× (3.54×, 3.12×, 1.95×, 1.47×, 1.24×, 2.93×, and 1.46× on average), respectively.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:25

REFERENCES
[1] Cited April 2023. Stablehlo, backward compatible ML compute opset inspired by HLO/MHLO. https://github.com/

openxla/stablehlo.
[2] Cited January 2023. Basic Linear Algebra on NVIDIA GPUs. https://developer.nvidia.com/cublas.
[3] Cited January 2023. CUDA Templates for Linear Algebra Subroutines. https://github.com/NVIDIA/cutlass.
[4] Cited January 2023. Introduction to TorchScript. https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.

html.
[5] Cited January 2023. IREE. https://github.com/google/iree.
[6] Cited January 2023. MLIR-HLO: A Standalone "HLO" MLIR-based Compiler. https://github.com/tensorflow/mlir-hlo.
[7] Cited January 2023. NVIDIA A10 GPU Accelerator. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/a10/pdf/A10-Product-Brief.pdf.
[8] Cited January 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-compute.
[9] Cited January 2023. NVIDIA TensorFlow User Guide. https://docs.nvidia.com/deeplearning/frameworks/tensorflow-

user-guide/index.html.
[10] Cited January 2023. ONNX Runtime. https://onnxruntime.ai.
[11] Cited January 2023. TensorRT. https://developer.nvidia.com/tensorrt.
[12] Cited January 2023. TensorRT Python API Reference. https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/.
[13] Cited January 2023. The Torch-MLIR Project. https://github.com/llvm/torch-mlir.
[14] Cited January 2023. XLA: Optimizing Compiler for Machine Learning. https://www.tensorflow.org/xla.
[15] Cited June 2023. Effective Transformer. https://github.com/bytedance/effective_transformer.
[16] Cited March 2023. Introducing nvFuser, a deep learning compiler for PyTorch. https://pytorch.org/blog/introducing-

nvfuser-a-deep-learning-compiler-for-pytorch/.
[17] Cited March 2023. NVIDIA FasterTransformer. https://github.com/NVIDIA/FasterTransformer.
[18] Cited March 2023. NVIDIA Triton Inference Server. https://developer.nvidia.com/nvidia-triton-inference-server.
[19] Cited March 2023. PyTorch 2.0 Release. https://pytorch.org/blog/pytorch-2.0-release/.
[20] Cited March 2023. TensorRT Dynamic Shape. https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.

html#work_dynamic_shapes.
[21] Cited March 2023. TorchInductor: a PyTorch-native Compiler with Define-by-Run IR and Symbolic Shapes. https://dev-

discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747.
[22] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.).
USENIX Association, 265–283.

[23] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and Prashant J. Nair. 2021. Accelerating
Recommendation System Training by Leveraging Popular Choices. Proc. VLDB Endow. 15, 1 (2021), 127–140.

[24] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2022. Optimizing Inference Serving on Serverless
Platforms. Proc. VLDB Endow. 15, 10 (2022), 2071–2084.

[25] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query Processing. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein (Eds.). ACM, 261–272.

[26] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang,
Patricia Suriana, Shoaib Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing
Fast and Portable Code. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2019,
Washington, DC, USA, February 16-20, 2019, Mahmut Taylan Kandemir, Alexandra Jimborean, and Tipp Moseley (Eds.).
IEEE, 193–205. https://doi.org/10.1109/CGO.2019.8661197

[27] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, and Niketan Pansare.
2018. On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12
(2018), 1755–1768.

[28] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian, Douglas Burdick, and Shivaku-
mar Vaithyanathan. 2014. Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML. Proc.
VLDB Endow. 7, 7 (2014), 553–564.

[29] Matthias Böhm, Douglas R. Burdick, Alexandre V. Evfimievski, Berthold Reinwald, Frederick R. Reiss, Prithviraj
Sen, Shirish Tatikonda, and Yuanyuan Tian. 2014. SystemML’s Optimizer: Plan Generation for Large-Scale Machine
Learning Programs. IEEE Data Eng. Bull. 37, 3 (2014), 52–62.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

https://github.com/openxla/stablehlo
https://github.com/openxla/stablehlo
https://developer.nvidia.com/cublas
https://github.com/NVIDIA/cutlass
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://github.com/google/iree
https://github.com/tensorflow/mlir-hlo
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/A10-Product-Brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/A10-Product-Brief.pdf
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html
https://onnxruntime.ai
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/
https://github.com/llvm/torch-mlir
https://www.tensorflow.org/xla
https://github.com/bytedance/effective_transformer
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://github.com/NVIDIA/FasterTransformer
https://developer.nvidia.com/nvidia-triton-inference-server
https://pytorch.org/blog/pytorch-2.0-release/
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work_dynamic_shapes
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work_dynamic_shapes
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://doi.org/10.1109/CGO.2019.8661197

206:26 Zhen Zheng et al.

[30] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan, Leyuan
Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX
Association, 578–594.

[31] Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. Learning to Optimize Tensor Programs. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.).
3393–3404. https://proceedings.neurips.cc/paper/2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html

[32] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig, Ugur Çetintemel, and Stan Zdonik. 2015.
An Architecture for Compiling UDF-centric Workflows. Proc. VLDB Endow. 8, 12 (2015), 1466–1477.

[33] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAttention: Fast and Memory-
Efficient Exact Attention with IO-Awareness. CoRR abs/2205.14135 (2022). https://doi.org/10.48550/arXiv.2205.14135
arXiv:2205.14135

[34] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive query processing. Foundations and Trends®
in Databases 1, 1, 1–140.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, 4171–4186.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[37] Jingzhi Fang, Yanyan Shen, Yue Wang, and Lei Chen. 2021. ETO: Accelerating Optimization of DNN Operators by
High-Performance Tensor Program Reuse. Proc. VLDB Endow. 15, 2 (2021), 183–195.

[38] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner. 2018. Pipelined Query Processing in
Coprocessor Environments. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein
(Eds.). ACM, 1603–1618.

[39] Philipp M Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl,
and Volker Markl. 2020. Grizzly: Efficient stream processing through adaptive query compilation. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 2487–2503.

[40] Tim Gubner and Peter Boncz. 2022. Excalibur: A Virtual Machine for Adaptive Fine-grained JIT-Compiled Query
Execution based on VOILA. Proceedings of the VLDB Endowment 16, 4 (2022), 829–841.

[41] Donghyoung Han, Jongwuk Lee, and Min-Soo Kim. 2022. FuseME: Distributed Matrix Computation Engine based on
Cuboid-based Fused Operator and Plan Generation. In Proceedings of the 2022 International Conference on Management
of Data. 1891–1904.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.
IEEE Computer Society, 770–778.

[43] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. TCUDB: Accelerating Database with Tensor Processors. In
Proceedings of the 2022 International Conference on Management of Data. 1360–1374.

[44] Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish Tatikonda, and Frederick R. Reiss. 2015.
Resource Elasticity for Large-Scale Machine Learning. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and
Zachary G. Ives (Eds.). ACM, 137–152.

[45] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. 2019. Dissecting the NVidia Turing T4 GPU via
Microbenchmarking. CoRR abs/1903.07486 (2019). arXiv:1903.07486 http://arxiv.org/abs/1903.07486

[46] Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing
deep learning computation with automatic generation of graph substitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim Brecht and Carey
Williamson (Eds.). ACM, 47–62.

[47] Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan, Guanpeng Li, Shuaiwen Leon Song, and Dingwen
Tao. 2021. COMET: A Novel Memory-Efficient Deep Learning Training Framework by Using Error-Bounded Lossy

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

https://proceedings.neurips.cc/paper/2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html
https://doi.org/10.48550/arXiv.2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1903.07486
http://arxiv.org/abs/1903.07486

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:27

Compression. Proceedings of the VLDB Endowment 15, 4 (2021), 886–899.
[48] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open Framework for Query Optimization and

Compilation. Proceedings of the VLDB Endowment 15, 11 (2022), 2389–2401.
[49] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of compiled queries. In 2018 IEEE 34th

International Conference on Data Engineering (ICDE). IEEE, 197–208.
[50] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT:

A Lite BERT for Self-supervised Learning of Language Representations. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[51] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques A. Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2021, Seoul,
South Korea, February 27 - March 3, 2021, Jae W. Lee, Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, 2–14.

[52] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2016. HippogriffDB: Balancing
I/O and GPU Bandwidth in Big Data Analytics. Proceedings of the VLDB Endowment 9, 14 (2016), 1647–1658.

[53] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan,
Pritam Damania, and Soumith Chintala. 2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
Proc. VLDB Endow. 13, 12 (2020), 3005–3018.

[54] Youjie Li, Amar Phanishayee, Derek Murray, Jakub Tarnawski, and Nam Sung Kim. 2022. Harmony: Overcoming
the hurdles of GPU memory capacity to train massive DNN models on commodity servers. Proceedings of the VLDB
Endowment 15, 11 (2022), 2747–2760.

[55] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh, and Miso Cilimdzic. 2004. Robust
query processing through progressive optimization. In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. 659–670.

[56] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma, and Bin Cui. 2021. Heterogeneity-Aware
Distributed Machine Learning Training via Partial Reduce. In SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 2262–2270.

[57] Xupeng Miao, Yining Shi, Hailin Zhang, Xin Zhang, Xiaonan Nie, Zhi Yang, and Bin Cui. 2022. HET-GMP: A Graph-
based System Approach to Scaling Large Embedding Model Training. In Proceedings of the 2022 International Conference
on Management of Data. 470–480.

[58] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang, and Bin Cui. 2022. Galvatron: Efficient
Transformer Training over Multiple GPUs Using Automatic Parallelism. Proceedings of the VLDB Endowment 16, 3
(2022), 470–479.

[59] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David García, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, andHaoWu. 2018. Mixed Precision Training. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

[60] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern hardware. Proceedings of the VLDB
Endowment 4, 9 (2011), 539–550.

[61] Chanyoung Oh, Zhen Zheng, Xipeng Shen, Jidong Zhai, and Youngmin Yi. 2020. GOPipe: A Granularity-Oblivious
Programming Framework for Pipelined Stencil Executions on GPU. In PACT ’20: International Conference on Parallel
Architectures and Compilation Techniques, Virtual Event, GA, USA, October 3-7, 2020, Vivek Sarkar and Hyesoon Kim
(Eds.). ACM, 43–54.

[62] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti
Ramesh, and Jordan Soyke. 2017. TensorFlow-Serving: Flexible, High-Performance ML Serving. CoRR abs/1712.06139
(2017). arXiv:1712.06139 http://arxiv.org/abs/1712.06139

[63] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimarjan Negi, Anil
Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evalu-
ating End-to-End Optimization for Data Analytics Applications in Weld. Proc. VLDB Endow. 11, 9 (2018), 1002–1015.

[64] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024–8035.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

https://arxiv.org/abs/1712.06139
http://arxiv.org/abs/1712.06139

206:28 Zhen Zheng et al.

[65] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improving execution efficiency of just-in-time
compilation based query processing on GPUs. Proceedings of the VLDB Endowment 14, 2 (2020), 202–214.

[66] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by
generative pre-training. (2018).

[67] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn.
Res. 21 (2020), 140:1–140:67.

[68] Jonathan Raiman. 2018. Dali: Lazy Compilation of Dynamic Computation Graphs. InWorkshop on Systems for Machine
Learning and Open Source Software at NeurIPS 2018.

[69] Alexander Renz-Wieland, Rainer Gemulla, Zoi Kaoudi, and Volker Markl. 2022. NuPS: A Parameter Server for Machine
Learning with Non-Uniform Parameter Access. In Proceedings of the 2022 International Conference on Management of
Data. 481–495.

[70] S. Rasoul Safavian and David A. Landgrebe. 1991. A survey of decision tree classifier methodology. IEEE Trans. Syst.
Man Cybern. 21, 3 (1991), 660–674.

[71] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma, Zachary Tatlock, and Yida Wang.
2021. Nimble: Efficiently compiling dynamic neural networks for model inference. Proceedings of Machine Learning
and Systems 3 (2021), 208–222.

[72] Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong Zhou. 2019. Astra: Exploiting Predictability
to Optimize Deep Learning. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice
Herlihy, Emmett Witchel, and Alvin R. Lebeck (Eds.). ACM, 909–923.

[73] Leonhard F. Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska. 2021. Tuplex: Data Science in
Python at Native Code Speed. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1718–1731.

[74] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. 10–19.

[75] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses,
Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions. CoRR abs/1802.04730 (2018).

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.).
5998–6008.

[77] Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. 2018. DeePMD-kit: A deep learning package for many-body
potential energy representation and molecular dynamics. Comput. Phys. Commun. 228 (2018), 178–184. https:
//doi.org/10.1016/j.cpc.2018.03.016

[78] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and Ge Yu. 2022. NeutronStar: Dis-
tributed GNN Training with Hybrid Dependency Management. In Proceedings of the 2022 International Conference on
Management of Data. 1301–1315.

[79] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, EMNLP 2020 - Demos, Online, November 16-20, 2020, Qun Liu
and David Schlangen (Eds.). Association for Computational Linguistics, 38–45.

[80] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili. 2012. Kernel Weaver: Automatically
Fusing Database Primitives for Efficient GPU Computation. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 107–118.

[81] Yuncheng Wu, Tien Tuan Anh Dinh, Guoyu Hu, Meihui Zhang, Yeow Meng Chee, and Beng Chin Ooi. 2022. Serverless
data science-are we there yet? a case study of model serving. In Proceedings of the 2022 International Conference on
Management of Data. 1866–1875.

[82] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, and Yibo Zhu. 2022. Bolt: Bridging the Gap between
Auto-tuners and Hardware-native Performance. In Proceedings of Machine Learning and Systems 2022, MLSys 2022, Santa
Clara, CA, USA, August 29 - September 1, 2022, Diana Marculescu, Yuejie Chi, and Carole-Jean Wu (Eds.). mlsys.org.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1016/j.cpc.2018.03.016

BladeDISC: Optimizing Dynamic Shape Machine Learning Workloads via Compiler Approach 206:29

[83] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion Stoica. 2022. Balsa: Learning a
Query Optimizer Without Expert Demonstrations. In Proceedings of the 2022 International Conference on Management
of Data. 931–944.

[84] Xiaodong Yi, Shiwei Zhang, Lansong Diao, Chuan Wu, Zhen Zheng, Shiqing Fan, Siyu Wang, Jun Yang, and Wei Lin.
2022. Optimizing DNN Compilation for Distributed Training With Joint OP and Tensor Fusion. IEEE Trans. Parallel
Distributed Syst. 33, 12 (2022), 4694–4706.

[85] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. 2022. Orca: A Distributed
Serving System for Transformer-Based Generative Models. In 16th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, Marcos K. Aguilera and Hakim Weatherspoon
(Eds.). USENIX Association, 521–538. https://www.usenix.org/conference/osdi22/presentation/yu

[86] Mingxing Zhang, Yongwei Wu, Kang Chen, Teng Ma, and Weimin Zheng. 2016. Measuring and Optimizing Distributed
Array Programs. Proc. VLDB Endow. 9, 12 (2016), 912–923.

[87] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm, Yizhi Liu, Yida Wang, Luis Ceze, Tianqi Chen,
and Gennady Pekhimenko. 2022. DietCode: Automatic Optimization for Dynamic Tensor Programs. In Proceedings of
Machine Learning and Systems 2022, MLSys 2022, Santa Clara, CA, USA, August 29 - September 1, 2022, Diana Marculescu,
Yuejie Chi, and Carole-Jean Wu (Eds.). mlsys.org.

[88] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang
Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020. USENIX Association, 863–879.

[89] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, andWenguang Chen. 2017. Versapipe: a versatile
programming framework for pipelined computing on GPU. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-18, 2017, Hillery C. Hunter, Jaime
Moreno, Joel S. Emer, and Daniel Sánchez (Eds.). ACM, 587–599.

[90] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, and Wenguang Chen. 2019. HiWayLib: A
Software Framework for Enabling High Performance Communications for Heterogeneous Pipeline Computations. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel,
and Alvin R. Lebeck (Eds.). ACM, 153–166.

[91] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong Liu, Jun Yang,
Jidong Zhai, Shuaiwen Leon Song, and Wei Lin. 2022. AStitch: enabling a new multi-dimensional optimization space
for memory-intensive ML training and inference on modern SIMT architectures. In ASPLOS ’22: 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 28
February 2022 - 4 March 2022. ACM, 359–373.

[92] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi Zhao, Lansong Diao, Jun Yang, and Wei
Lin. 2020. Fusionstitching: boosting memory intensive computations for deep learning workloads. arXiv preprint
arXiv:2009.10924 (2020).

[93] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui,
Fan Yang, Mao Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. 2022. ROLLER: Fast and Efficient Tensor
Compilation for Deep Learning. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2022, Carlsbad, CA, USA, July 11-13, 2022, Marcos K. Aguilera and Hakim Weatherspoon (Eds.). USENIX Association,
233–248.

[94] Kai Zhu, Wenyi Zhao, Zhen Zheng, Tianyou Guo, Pengzhan Zhao, Junjie Bai, Jun Yang, Xiaoyong Liu, Lansong Diao,
and Wei Lin. 2021. DISC: A Dynamic Shape Compiler for Machine Learning Workloads. In EuroMLSys@EuroSys 2021,
Proceedings of the 1st Workshop on Machine Learning and Systemsg Virtual Event, Edinburgh, Scotland, UK, 26 April,
2021, Eiko Yoneki and Paul Patras (Eds.). ACM, 89–95.

Received January 2023; revised April 2023; accepted May 2023

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 206. Publication date: September 2023.

https://www.usenix.org/conference/osdi22/presentation/yu

	Abstract
	1 Introduction
	2 Background of Dyn-Shape Compiler
	2.1 AI Compiler and Limitation on Dyn-Shape
	2.2 Challenges of Dyn-shape Optimization

	3 Global Symbolic Shape Information
	3.1 Global Shape Analysis
	3.2 Compile-time Broadcast Elimination

	4 Advanced Fusion Decision
	4.1 Operator Fusion Pipeline
	4.2 Stitch-fusion Decision
	4.3 Compute-intensive Operator Merging

	5 Dynamic Shaped Code Generation
	5.1 Shape-insensitive Code Generation for Memory-intensive Subgraphs
	5.2 Multi-codegen and Runtime Speculation.

	6 System Design and Implementation
	6.1 Runtime Abstraction Layer
	6.2 Optimization Pass Pipeline

	7 Evaluation
	7.1 End-to-end Performance
	7.2 Comparison with Library-based Solutions
	7.3 Breakdown Analysis
	7.4 Schedule Speculation Analysis

	8 Related Work
	9 Conclusion
	References

