
Improving GPU Sharing Performance through

Adaptive Bubbleless Spatial-Temporal Sharing

Shulai Zhang
Shanghai Jiao Tong University

Shanghai, China
zslzsl1998@sjtu.edu.cn

Quan Chen
Shanghai Jiao Tong University

Shanghai, China
chen-quan@cs.sjtu.edu.cn

Weihao Cui
Shanghai Jiao Tong University

Shanghai, China
weihao@sjtu.edu.cn

Han Zhao
Shanghai Jiao Tong University

Shanghai, China
zhaohan_miven@sjtu.edu.cn

Chunyu Xue
Shanghai Jiao Tong University

Shanghai, China
dicardo@sjtu.edu.cn

Zhen Zheng
Microsoft

Beijing, China
zhengzhen@microsoft.com

Wei Lin
Alibaba Group

Hangzhou, China
weilin.lw@alibaba-inc.com

Minyi Guo
Shanghai Jiao Tong University

Shanghai, China
guo-my@cs.sjtu.edu.cn

Abstract

Data centers now allow multiple applications that have light-
weight workloads to share a GPU. Existing temporal or spa-
tial sharing systems struggle to provide efficient and accurate
quota assignments. We observe that the performance of the
multi-user system is often underestimated because of the
existence of unused GPU “bubbles” and can be enhanced
by squeezing the bubbles. Based on this observation, we de-
sign Bless, a bubble-less spatial-temporal sharing GPU sys-
tem that fine-tunes the GPU resource allocation to improve
multi-user performance. Bless leverages precise computing
resource management and fine-grained kernel scheduling to
ensure stringent quota guarantees and reduce latency fairly
for applications with varying GPU quotas. We implement
and evaluate Bless with multiple applications and work-
loads. Our result shows that Bless achieves 21.1% − 37.3%
average latency reduction over the state-of-the-art while
guaranteeing the promised quota for all applications.

CCS Concepts: • Computer systems organization →
Cloud computing.

Keywords: GPU sharing, cloud computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03. . . $15.00
https://doi.org/10.1145/3689031.3696070

ACM Reference Format:

Shulai Zhang, Quan Chen, Weihao Cui, Han Zhao, Chunyu Xue,
Zhen Zheng,Wei Lin, andMinyi Guo. 2025. Improving GPU Sharing
Performance through Adaptive Bubbleless Spatial-Temporal Shar-
ing. In Twentieth European Conference on Computer Systems (EuroSys
’25), March 30–April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3689031.3696070

1 Introduction

GPUs are widely used to run AI-enhanced applications [13,
15], scientific computing [27, 50], etc. While some applica-
tions (e.g., deep learning models [14] and video transcod-
ing [16]) often have lightweight workloads, they cannot fully
utilize a whole GPU [26, 32, 54]. The GPU utilization can be
greatly improved by allowing multiple applications to share
a GPU. To this end, current data centers [12, 17] allow an ap-
plication to employ part of a GPU with a provisioned quota.
Temporal sharing and spatial sharing are often used to multi-
plex a GPU. Figure 1 shows an example of two applications
sharing a GPU with different multiplexing methods.
Temporal sharing allocates GPU time slices to applica-

tions by controlling the GPU kernel launching frequency
based on each application’s quota [10, 42, 55, 67]. However,
due to the heterogeneity and un-preemptable nature of GPU
kernels, applications cannot precisely occupy their provi-
sioned quotas, as observed from Figure 1(a). As for spatial
sharing [24, 28, 37], a GPU is spatially divided and stati-
cally allocated to applications according to their quotas. For
instance, Nvidia’s Multi-Process Service (MPS) [2] only di-
vides and allocates GPU’s SMs (streaming multiprocessors),
letting the applications compete for global memory band-
width. Therefore, applications may experience performance
degradation compared to their required quotas due to the
interference. Nvidia Multi-Instance GPU (MIG) [9] guaran-
tees quota through physical isolation of GPU resources. As

573

https://doi.org/10.1145/3689031.3696070
https://doi.org/10.1145/3689031.3696070
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3696070&domain=pdf&date_stamp=2025-03-30

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

VGG11 request arrivals ResNet50 request arrivals

bubbles

(b) Spatial
sharing

(c) Ideal
sharing

Time (ms)0 10 20 30 40 50

VGG11
exec

GPU
Util.

duration

ResNet50
exec

10.1ms

11.5ms

17.1ms

(a) Temporal
sharing

Figure 1. An example of handling two applications’ requests
on an Nvidia A100 GPU with a real-world trace [5]. The two
co-located applications are VGG11 [57] (Quota: 1/3 GPU,
latency: 10.2ms, GPU utilization: 81%) and ResNet50 [35]
(Quota: 2/3 GPU, latency: 8.7ms, GPU utilization: 86%).

observed from Figure 1(b), through spatial sharing, even if an
application does not use its assigned SMs, other applications
are not permitted to use them.
Therefore, neither temporal sharing nor spatial sharing

can provide efficient and accurate resource guarantees. As
observed in Figure 1, many “bubbles” exist during a GPU’s
execution, resulting in low performance of applications. In
this work, we aim to squeeze these bubbles to improve the
multi-user GPU performance with applications’ required
quota guarantee. As shown in Figure 1(c), the ideal scenario
demonstrates the elimination of the bubbles. The latency of
the marked request decreases from 17.1ms with temporal-
sharing and 11.5ms with spatial-sharing, to 10.1ms after bub-
ble squeezing, without slowing down the other application.

Two challenges have to be addressed to achieve the ideal
sharing depicted in Figure 1(c), even though the built-in
GPU hardware scheduler is capable of filling the bubbles
through kernel concurrency. The hardware scheduler is un-
aware of the properties of GPU kernels, resulting in inter-
fered execution of concurrent kernels, increasing the latency
of independent requests. Therefore, the first challenge is
how to precisely schedule kernels to provide expected GPU
quotas for applications. Since applications provisioned vari-
ous quotas have distinct performance targets, a mechanism
is required to manage the execution behavior of kernels
from different applications. The second challenge is how to
minimize the bubbles when heterogeneous kernels are run-
ning concurrently. It requires low-cost fine-grained resource
management for kernels at runtime. The current resource
management through narrow vendor primitives (e.g., CUDA
streams [1], MPS contexts [2]) is coarse-grained and static,
lacking the reconfigurability in a multi-user scenario.

This paper proposes Bless, a bubble-less spatial-temporal
GPU sharing scheme. Bless allows each request to utilize
the entire GPU whenever the resources are idle, and shrinks
its resources instantly when other requests arrive. Bless
leverages unused GPU resources to reduce the latency of co-
located applicationswith GPU quotas provisioned.Bless also

optimizes the concurrent execution of kernels when requests
are overlapped to further reduce all requests’ latencies.
Same to prior work on co-locating GPU applications in

private data centers [22, 58, 73], Bless uses offline profiling
(§4.2) to collect some performance data, with low overhead.
The overhead is negligible for long-running applications in
production data centers (e.g., AI inference services). Bless
is feasible in public clouds if users allow the provider to
profile their long-term applications beforehand for better fu-
ture performance [52]. To schedule the concurrent requests
from different applications, Bless designs a multi-task sched-
uler (§4.3) on the host side and launches kernels with the
granularity of kernel squads. A kernel squad is a group of
kernels from different applications. Since the duration of ker-
nel squads is much shorter than the requests, we can realize
resource re-configuration within the execution of requests,
thereby achieving the precise GPU quota assignment. Bless
optimizes the execution of kernel squads based on the obser-
vation that the execution duration under various concurrent
configurations is predictable. Bless proposes an execution
configuration determiner (§4.4) to identify the optimal ker-
nel group execution configuration at runtime through the
low-cost estimators. Bless precisely controls the compute
resource that each kernel uses in a squad using a concurrent
kernel manager (§4.5). Such precise control is implemented
by launching kernels with different resource configurations
to heterogeneous pre-established GPU contexts.

We have implemented Bless, and the user applications are
built with TVM [6] and Pytorch. We evaluate Bless on an
Nvidia A100 GPU, with various workloads and applications,
as well as real-world query invocation trace loads [5, 74].
Experimental results show that Bless reduces the average la-
tency by up to 37.3%, compared with SOTA GPU-sharing sys-
tems. In a more specific scenario, co-locating two BERT [62]
inference applications on a GPU using Bless reduces average
latency by 39.1%. When four BERT instances are co-located,
the latency reduction reaches 41.2%. Furthermore, all applica-
tions can experience reduced latency compared to scenarios
where applications are deployed with computing resources
provisioned as quotas. The main contributions of Bless are
three-fold.

1) Sophisticate analysis of “bubbles” when a GPU is

shared by multiple applications. The analysis proves that
it is feasible to improve the performance of some applications
by eliminating the bubbles without hurting the performance
of all applications.

2) The precisemodeling of the kernel execution with

temporal-spatial sharing. It allows Bless to build near-
optimal kernel squads based on the accurate latency predic-
tion at runtime with minimal cost.
3) A systematic solution that improves the applica-

tions’ performancewithoutmutual impact.The solution
combines fine-grained scheduling and precise resource man-
agement for kernels to ensure stringent quota assignment.

574

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

2 Related Works

Various techniques could be used to improve GPU utilization
and enhance the performance of co-located applications.
Some previous works [19, 22, 33, 58, 68, 73] aim for a biased
GPU-sharing system to handle both real-time and best-effort
tasks. Among them, Reef [33] applies kernel fusion [45] to
exploit intra-operator parallelism and kernel preemption to
control the kernel launch sequence. Orion [58] mitigates
the interference of co-located tasks through comprehensive
offline profiling. However, biased sharing schemes reduce
the latency of real-time tasks at the expense of best-effort
task performance. They lack overall fine-grained scheduling
for applications with fixed GPU quotas.

Many otherworks exploit spatial partitioning across SMs [2,
18, 38, 49, 61, 78] through runtimes and microarchitectural
techniques. Multi-user GPU systems based on these meth-
ods provide static resources for applications [23, 24, 28, 30,
67] and lack the adaptability to manage resources to en-
hance performance. There are also software approaches, e.g.,
Paella [46], Reef [33] and so on [44, 51, 66], controlling the
resource usage of applications through code transformation.
There are also intra-SM partitioning techniques to partition
resources within SMs [64, 65, 69]. However, these techniques
are not equipped on commodity GPUs.

Some priorworks [28, 29, 34, 43, 47, 70] adopt GPU-sharing
for DNN inference systems to satisfy service-level objectives
(SLO). Since the latency SLOs are much more relaxed than
the solo-run latencies of applications, existing mechanisms
are not feasible to guarantee each application’s performance
with a specific provisioned quota. As for training, Zico [41]
and Wavelet [63] coordinate the forward pass and the back-
ward pass of training iterations to reduce memory footprint.

To estimate the performance of concurrent kernel execu-
tion, Abacus [26] proposes a black-box predictor to predict
the latency of overlapped operators without spatial isola-
tion. There are also approaches to model the performance of
concurrent kernel execution with spatial isolation [76, 77].
However, these modeling methods rely on underlying hard-
ware information and are not applicable at runtime.

3 Background and Motivation

In this section, we introduce the background of GPU sharing,
investigate the inefficiencies of current solutions, and discuss
opportunities for bubble-less spatial-temporal sharing.

3.1 Workflow of GPU sharing

Figure 2 shows a general multi-user GPU-sharing workflow.
The client applications comprise DAGs of operators, which
are either launched as computational kernels or other ker-
nels (e.g., memory management kernels and synchronization
kernels). At the deployment stage, the host first initializes
the resources (contexts, memories) for each registered ap-
plication through vendor APIs and prepares GPU functions

Device
Queues

Scheduler (online)

DAG of App1 DAG of App2

Hardware scheduler

CPU

GPU

Kernel launch

fetch
dispatch

SMs

requests

vendor APIs

operators
kernels

User-own
contexts/
memory

Deployment (offline)

register

GPU
resources

TAG

Figure 2. A general GPU-sharing workflow.

in GPU contexts. At runtime, multiple applications submit
their requests to the host scheduler, which is responsible
for further launching kernels into different device queues.
Device queues are implemented as ring buffers to store ker-
nels so that they can be accessed by the CPU and the GPU
simultaneously through DMA [33, 59].
For computational kernels, the GPU hardware scheduler

fetches blocks of kernels from device queues and dispatches
them onto different streamingmultiprocessors (SMs) , thereby
enabling the concurrency execution of requests from differ-
ent applications. For memory management kernels, they con-
tend for the PCI-e bandwidth to transfer data between CPU
and GPU. To isolate the resources that computational ker-
nels use, developers can create GPU contexts with resource
restriction (e.g., cuCtxCreate_v3 for Nvidia MPS [2])) for
various applications. Subsequently, kernels from different
contexts would be spatially restricted as delivered to context-
bonded device queues tagged with resource restriction. For
all GPU kernels including memory management kernels, the
host scheduler can also control the launch timing to control
the kernels’ execution sequence on the GPU.

3.2 Inefficiencies of existing GPU sharing solutions

To handle requests from multiple applications, the host is
responsible for organizing and scheduling kernels with vari-
ous mechanisms. We review the state-of-the-art scheduling
schemes in GPU multiplexing and discuss the performance
issues in scheduling kernels from heterogeneous applica-
tions. To highlight their performance gaps, we conduct an
experiment to measure the latencies of executing a VGG11
request and a ResNet50 request simultaneously using various
schemes. The experimental results are shown in Figure 4(b).
Static sharing. To isolate the performance of requests

from co-located applications, state-of-the-art solutions [23,
28, 30] assign fixed resources to kernels through vendor
mechanisms [2, 3, 9]. Within the lifecycle of a request, its
assigned SM/memory resources are unchanged to achieve
stable latencies. However, such a static isolation scheme
will produce many un-exploited GPU bubbles, as shown

575

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 4 4
1 2 3 4 5p 5 6

(b) Unbounded sharing

1 2 3 4 5 6

SMs

1 2 3 4 5
Device
queues

(a) Static sharing

time
SMs

Device
queues

SMs

Device
queues

Bound to ¾ SMs
Bound to ¼ SMs

Client2 resource restriction
Client1 resource restriction Client1 kernel

Client2 kernel

Client1 request Client2 request

Interfered kernel
execution
sequence

Fused kernels

bubbles

bubbles

Kernel preemption

Client1 kernel launch
Client2 kernel launch

1

1

(c) Biased sharing

Client2 execution latency

Figure 3. An example of GPU scheduling schemes when
handling requests from two clients simultaneously. The GPU
has 4 SMs. Request of client1 has 6 kernels while that of
client2 has 5 kernels.

in Figure 3(a). In our experiment, the static sharing scheme
provides an average 16.8𝑚𝑠 latency for VGG11 and ResNet50.

Unbounded sharing. To fully utilize the GPU computa-
tional resource, each client can be assigned an MPS context
or a stream and then rely on the hardware scheduler to utilize
the entire GPU without any SM restrictions. However, when
kernels from different MPS contexts/streams are co-located,
the execution order of kernels is interfered as shown in Fig-
ure 3(b). Thus, despite the high GPU utilization, the latency
of each request is neither predictable nor optimal (13.1𝑚𝑠

on average in Figure 4(b)). Wavelet [63] and Zico [41] uti-
lize unbounded sharing to overlap the training iterations of
multiple models, improving the GPU utilization.

Biased sharing. The above schemes launch kernels in the
request granularity. It means that once a request arrives, all
kernels of the request would be launched into device queues
asynchronously. The host loses control of the launched ker-
nels in this case. To this end, Reef [33] launches kernels peri-
odically and realizes deterministic kernel execution through
kernel fusion. The latency of the real-time request (client2 in
illustration) can be well maintained, while the performance
of the co-located best-effort tasks is sacrificed. Meanwhile,
the kernel fusion method for co-location would also intro-
duce bubbles as shown in Figure 3(c). With this scheduling
scheme, the latency of the real-time task is 10.4𝑚𝑠 and the
latency of the best-effort task is 18.2𝑚𝑠 (14.3𝑚𝑠 on average).
The sharing strategy of Orion [58] is also designed for prior-
itized jobs and falls under biased sharing.

Client1 request Client2 request

SMs

Device
queues

TAG: No SM restriction

TAG: Bound to ¾ SMs

1 2 3 4

15
10
5La

te
nc

y
(m

s)

Unbounded
sharing

Static
sharing

Biased
sharing

Unbiased
sharing

(a) Scheduling for unbiased GPU sharing

(b) Request latencies

VGG11

ResNet50

Average

TAG: No SM restriction

TAG: Bound to ¼ SMs

3 4 5

⓵Scheduling kernels in squads

5 6

1 2
⓶Precise resource
management

Client1
contexts
Client2
contexts

⓷Fast resource re-configuration

time

16.8
13.1 14.3

11.3

Figure 4. (a) The scheduling scheme for unbiased GPU
sharing. (b) The latencies of executing a VGG11 request and
a ResNet50 request simultaneously using various schemes.

3.3 Opportunities

To tackle the inefficiencies discussed above, we present a bet-
ter scheduling scheme for unbiased multi-user GPU-sharing
in Figure 4. The scheme promises better utilization and lower
latency of requests from three aspects.
Scheduling kernels in squads.When requests do not

overlap, Client1’s request can use all available resources on
GPU with no restriction. When Client2’s request arrives,
the scheduler has to shrink Client1’s resources to execute
Client2’s kernels instantly. Kernel-level preemption [21, 33]
is promising for the precise schedule of kernels but requires
modification of user code. To avoid interfering with user
code, we schedule kernels in fine granularity and lazily wait
for their completion rather than preempting them.
Nonetheless, finer scheduling granularity is not always

better. With the advent of powerful compute units (e.g., ten-
sor cores), typical matrix-multiplication kernels’ duration
can be reduced to several microseconds, which is comparable
to the kernel launch duration (around 3𝑢𝑠). To conceal the
kernel launch time, kernels should be scheduled in groups
with a proper granularity. In Bless, we refer to these groups
as kernel squads. In the illustration, the number of kernels
in each kernel squad is restricted to 4.
Precise resource management. To reduce the laten-

cies of all co-located requests, the duration of kernel squads
should be reduced as much as possible. It is achievable by
sufficiently utilizing unused GPU resources through tailored
resource management for kernels. Comprehensive model-
ing of concurrent kernels is required to determine optimal
resource management within kernel squad execution.
Fast resource re-configuration. Resources for kernels

have to be re-configured across and within kernel squads to
avoid idle GPU time. Since the switch between device queues
with different SM restrictions can be achieved efficiently

576

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Concurrent
Kernel

Manager
(§4.5)

Multi-task
Scheduler

(§4.3)

Task queues

U
se
ra

pp
lic
at
io
ns

Request
status

Offline profiler
(§4.2)

Execution
Config.

Determiner
(§4.4)

Profiled data
Register

Deployment
Runtime

GPU

Critical path of
kernel squad

SMs

InquireInquire

Figure 5. System overview of Bless.

through MPS context APIs, we realize quick resource re-
configuration by maintaining multiple MPS contexts.
With fine-grained kernel squad scheduling and delicate

computing resource management, the execution of all co-
located requests can be optimized, and the average latency
can be reduced to 11.3𝑚𝑠 in the experiment in Figure 4(b).

4 BlessMethodology

We propose Bless to enhance performance for concurrent
GPU applications with quota provisions in an unbiased man-
ner. In this section, we first take an overview look at Bless
and then introduce the components in Bless separately.

4.1 Overview of Bless

Bless comprises an offline deployment stage and an online
runtime as shown in Figure 5. At the deployment stage, each
application registers with the system and Bless leverages an
offline profiler (§4.2) to profile the performance of kernels (in-
cluding computational kernels as well as other kernels) with
varying computational resources through MPS. According
to the profiled data, Bless accepts stationary applications
with deterministic computation patterns at runtime, and
the applications are required to invoke GPU functions at
the granularity of GPU kernels. As for the runtime system,
there are three components: multi-task scheduler, execution
configuration determiner, and concurrent kernel manager.

Multi-task scheduler (§4.3). In Bless, each application has
its own dedicated task queue. The multi-task scheduler han-
dles the requests of each application in a FIFO order and
only processes requests of each application one at a time.
The scheduler tracks the request status using a kernel queue.
It selects kernels from concurrent active requests to form a
kernel squad.
Execution Configuration Determiner (§4.4). The execution

configuration determiner is tasked with optimizing the ex-
ecution of kernel squads. In each scheduling round, it esti-
mates the execution duration of kernel squads under various
configurations using two performance estimators, ultimately
selecting the best configuration for execution.
Concurrent kernel manager (§4.5). The concurrent kernel

manager is responsible for launching kernels to different
MPS GPU contexts. During runtime, it launches kernels

as scheduled by the multi-task scheduler and manages re-
sources following the optimal configuration searched by the
execution configuration determiner. Bless runtime on the
host side runs parallel with the kernels on the GPU.

4.2 Offline Profiling

Bless utilizes an offline profiler to obtain the overall perfor-
mance of applications as well as the statistics of detailed ker-
nels. Bless leverages the profiled data to determine whether
a registered application can be deployed and the appropriate
deployment strategy. The profiled data is also required for
the scheduler at runtime. Without profiling, the scheduler
of Bless would be degraded to the plain MPS scheduler.

4.2.1 Application profiling. For each application pro-
visioned with 𝑛% percentage of the GPU, we identify the
isolated latency 𝑇 [𝑛%] of it running with MPS, as well as its
required GPU memory size. For each kernel 𝑘 , we record
its duration with 𝑛% SMs as 𝑡 [𝑛%] [𝑘] and the duration from
the beginning of the application to the end of 𝑘 as 𝜏 [𝑛%] [𝑘].
We also record the proportion of the maximum active SM
usage 𝑑% for each kernel.

In practice, the profiler first runs the application one time
to obtain its overall performance. Then, the profiler runs
the application for another 𝑁 times to obtain the duration
of kernels under different SM configurations using MPS. 𝑁
represents the number of GPU partitions. When 𝑁 is large,
the execution configuration search space at runtime would
be unnecessarily large. We empirically set 𝑁 = 18 for Nvidia
A100 GPU (108 SMs) to prevent the explosion of configura-
tion search space as well as large profiling overhead. Then
the kernels are measured on 6%, 12%, ..., 100% of the GPU
leveraging CUDA events. Suppose there are𝑀 applications,
then the overall profiling complexity is 𝑂 (𝑀𝑁).
Bless avoids using heavy Nsight Compute [8] or Nsight

System [4] to profile other detailed properties of kernels. The
offline profiling finishes in seconds (1.9 seconds on average)
as evaluated in Table 1. For stationary applications such as
inference or training jobs that may run hours or days [36, 40,
56], the profiling cost at the deployment stage is amortized
and thus negligible. Note that for applications with fixed
patterns such as training, only one iteration is profiled. The
profiling requires the same GPU as runtime. If production
systems use various types of GPUs, then profiling needs to
be done on a same-model GPU as the target for runtime.

4.2.2 Deployment according to profiled data. Once all
the applications are profiled, the profiled data helps to make
the deployment decision. According to the kernel duration
information, Bless avoids placing applications with short
kernels and applications with extremely long kernels to-
gether beforehand, thereby preventing the former applica-
tions from being starved in every kernel squad. Bless works
well to co-locate most deep learning applications, with the
average kernel duration varying from 10𝑢𝑠 to 300𝑢𝑠 . Before

577

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

Step 2

Request1
(R1)

Request2
(R2)

𝑷𝟏"

>

0% 100%

> >

0% 100% 0% 100%

Kernel
squad

Select R1’s kernel Select R1’s kernel Select R2’s kernel

Step 0 Step 1
...

Real-time progress 𝑃" Expected progress 𝑃# kernels

𝑃$"

𝑃%"

𝑷𝟐"

𝑷𝟏"

𝑃$"

Figure 6. An example of kernel squad generation.

deploying each application, Bless also checks the remained
memory capacity on the GPU and guarantees that the place-
ment would not cause out-of-memory.
As for the scenario in which applications have to be co-

ordinated and deployed on multiple GPUs as GPUlet [23],
Bless can also be extended by replicating its runtime compo-
nents for each active GPU. In such a case, a central controller
can leverage the memory requirement and profiled kernel in-
formation to decide which specific GPU to place applications
to avoid conflict.

4.3 Multi-task Scheduling

Once the offline deployment of applications completes, Bless
starts the runtime multi-task scheduler. The objective of
the scheduler is to approach the isolated latency target and
reduce the latency unbiasedly of all co-located applications.

4.3.1 Request progress perception. The scheduling of
kernels depends on the status of active requests as well as the
isolated latency target 𝑇 [𝑛%]. The core concept of unbiased
sharing is to evenly distribute the execution progress among
concurrent active requests.
During each scheduling cycle, the multi-task scheduler

keeps track of the last scheduled kernel 𝑘 and estimates the
elapsed time 𝑡𝑒 [𝑛%] from the arrival of each active request
to the end of the tracked kernel. As introduced in §4.2, the
expected value of 𝑡𝑒 [𝑛%] is 𝜏 [𝑛%] [𝑘]. Thus, the real-time
progress of the request at the scheduling time is approx-
imately 𝑃𝑟 = 𝑡𝑒 [𝑛%]/𝑇 [𝑛%], while the expected duration
progress 𝑃𝑒 = 𝜏 [𝑛%] [𝑘]/𝑇 [𝑛%]. To achieve latencies lower
than the isolated latencies, the real-time progress 𝑃𝑟 should
be greater than 𝑃𝑒 for each co-located application.

4.3.2 Schedule with kernel squads. To fairly reduce the
latencies of all co-running requests, the kernel squad is gen-
erated as illustrated in Figure 6. In each generation step, a
kernel is selected from the request that has the shortest rel-
ative progress 𝑃 = 𝑃𝑟/𝑃𝑒 , indicating it is falling behind by
other active requests and is the most urgent for execution.
The process is terminated in two situations: (1) The kernel
count surpasses the predefined maximum number of kernels
per squad, which is 6 in Figure 6. (2) The selected kernel is
the last kernel of a request. Note that the maximum number

(a) Unbounded sharing

(b) Spatial sharing

(c) Spatial-temporal sharing

NasNet kernels
BERT kernels Insufficient overlap

time

SM restriction
for NasNet
SM restriction
for BERT

G
PU

 u
til

iza
tio

n

wasted

Figure 7. Optimizing a kernel squad (NasNet: 58 kernels,
BERT: 142 kernels). Case(a): No spatial restriction. Case(b):
66 SMs for NasNet/42 SMs for BERT. Case(c): The first 80%
kernels are spatially restricted while the restriction is re-
moved for the rear 20%.

of kernels per squad is an empirical parameter that trades off
the request latency and GPU sharing ability (§6.7). Smaller
squads indicate finer scheduling granularity and thus can
provide a more delicate sharing ability for the GPU, while
larger squads minimize the impact of kernel squad switching
due to prolonged kernel squad durations.

Since we check the progress of each request every time we
generate a kernel squad, we in fact schedule and compensate
for lagged requests at a fine granularity. Thus, even when
a biased slowdown occurs because of various interference
(e.g., inter-SM interference, internal memory interference,
and DMA/PCI-e interference), multi-task scheduling is still
able to ensure fair execution.

4.4 Execution Configuration Determiner

The execution configuration determiner aims to find the
optimal execution configurations for kernel squads to reduce
kernel squad duration, assuming they have already been
generated by the multi-task scheduler.

4.4.1 Execution configuration space. In this part, we
begin by showcasing the opportunities for execution opti-
mization. We then elaborate on the configuration space to
search for the optimal configuration.

Spatial sharing within the kernel squad. Enabling con-
current kernel execution within the kernel squad is crucial.
To further reduce the duration of kernel squads, it is impor-
tant to constrain the resources that kernels use within the
squad. Reasonable spatial sharing can effectively increase
GPU utilization within a kernel squad that consists of kernels
from different device queues. As shown in Figure 7(a), relying
on the scheduling of the hardware scheduler, the execution
sequence of kernels is uncontrollable and the insufficient
overlapping among kernels induces low GPU utilization.
Through strict spatial partitioning (Figure 7(b)), the time
slice with low GPU utilization is shortened, resulting in a
shorter squad duration (from 8.5𝑚𝑠 to 7.3𝑚𝑠) and increased
average GPU utilization (from 69.7% to 73.5%).

578

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

SMs

time

(a) Interference-free predictor

time

SMs

time

Predicted
duration

Non-overlapped

Overlapped

Real execution Execution modeling

SMs

time

Predicted
duration

Real execution Execution modeling

(b) Workload-equivalence predictor

SMs

Actual kernel execution Profiled kernel duration

Figure 8. The kernel squad performance estimators.

Spatial-temporal sharing within the kernel squad.

As shown in Figure 7(b), strict spatial partitioning within the
kernel squad is suboptimal because it cannot perfectly ensure
that the kernels from different requests finish simultaneously.
Thus, we can remove the SM restriction for kernels at the
rear of the kernel squad, allowing them to utilize the full
GPU (Figure 7(c)) in a spatial-temporal manner. In Bless, we
realize it through the lightweight context switch promised
by the concurrent kernel manager (§4.5). The kernel squad
duration is then reduced from 7.3𝑚𝑠 to 6.9𝑚𝑠 , and the GPU
utilization is increased from 73.5% to 81.4%.

To model and estimate the kernel squad performance, we
assume that the computational restriction for each request is
static within the kernel squad. Thus, for each kernel squad,
the configuration space includes the no computation restric-
tion case (Figure 7(a)), as well as 𝐶𝐾−1

𝑁−1 configurations that
promise stringent spatial isolation (Figure 7(b)), where K
refers to the number of active requests and N refers to the
number of SM partitions. With an Nvidia A100 GPU split to
𝑁 = 18 partitions when there are 2 active requests, the size
of the configuration space is 𝐶2−1

18−1 + 1 = 18.

4.4.2 Kernel squad performance estimator. We then
leverage two performance estimators to predict the duration
of kernel squads with different execution configurations. The
purpose of the estimators is to find the configuration with
which the kernel squad runs fastest at runtime. Thus, the
design of the estimators takes both the runtime efficiency
and prediction accuracy into consideration.

Interference-free predictor. When kernels from differ-
ent requests are strictly isolated, we propose the interference-
free predictor (Figure 8(a)). The estimated squad duration
is calculated as Equation 1, which is the time of the longest
stacked up durations of each active request’s kernels. In Equa-
tion 1, 𝑘 𝑗

𝑖
refers to the 𝑖-th kernel of the application 𝑗 in the

squad, 𝑛 𝑗% is the SM restriction proportion of application 𝑗

and R is the set of active requests within the kernel squad.

𝑡 =𝑚𝑎𝑥
𝑗∈R

(
∑︁
𝑖

𝑡 [𝑛 𝑗%] [𝑘 𝑗
𝑖
]) (1)

We test the predictors with 1500 pair-wise combinations
from Bless’s testbed and the average prediction error of the
interference-free predictor is 6.7%. The interference among

(a) Kernel-level interference (b) Application-level interference

App1 latency App2 latency

Extended latency

Figure 9. (a) Kernel-level interference. (b) Application-level
interference (R:ResNet50, V:VGG11, A:AlexNet, B:BERT).

kernels is not considered but it does not influence the pre-
diction accuracy much. We analyze the reasons as follows:
As most inter-SM interference comes from the L2 cache con-
flict and competition for bandwidth [76, 77], the large L2
cache size and high bandwidth on high-performance GPUs
have restricted the slowdown of kernels. As shown in Fig-
ure 9(a), we examine the inter-SM interference by testing
the slowdown of kernels under different memory pressures.
The kernel-level slowdown ratio is no larger than 2 even
when co-locating with a highly memory-intensive kernel.
At the application level as shown in Figure 9(b), the average
slowdown caused by interference is 7% when co-locating
applications in mutual pairs.
Workload-equivalence predictor. When kernels from

all requests are not strictly spatially isolated, we propose the
workload-equivalence predictor. In this case, the SM usage
of a kernel is not only restricted but also influenced by other
kernels, and the contention between kernels is unknown.
As shown in Figure 8(b), we first estimate the kernels that
would overlap with each other. The execution of overlapped
kernels is then modeled as a sequential execution where
every kernel occupies all active SMs. The durations of non-
overlapped kernels are added to the total duration. Thus, the
predicted duration is calculated as Equation 2.

𝑡 =

𝑞∑︁
𝑖=0

∑︁
𝑗∈R

𝑡 [
∑︁
𝑗∈R

𝑑
𝑗

𝑖
%] [𝑘 𝑗

𝑖
] (2)

In Equation 2, 𝑑 𝑗
𝑖
% is the original SM usage proportion of

𝑘
𝑗

𝑖
without restriction, 𝑞 is the maximum number of kernels

among each request in the squad, and the durations are
summed up in a breadth-first manner over requests in the
kernel squad1. Notice that the duration of a kernel using the
desired number of SM is interpolated if it cannot utilize so
many SMs. The average prediction error of the workload-
equivalence predictor is 7.1%.

In both estimators, the durations of memory management
kernels (e.g., H2D, D2H memcpy) are added together with

1In our test, Volta and later architecture’s hardware scheduler provides
a simple mechanism to fairly schedule kernels from equal-priority device
queues, according to the buffered kernel number in queues.

579

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

Interference-free predictor
Workload-equavalence predictor

Optimal configuration

SM num

Figure 10. The performance of two performance estimators
to predict a {NasNet+ResNet50} squad. X-axis: different con-
figurations (NSP for no spatial restriction).

the durations of computational kernels, no matter if they
actually overlap at runtime. This may cause the predicted
duration to be slightly longer than the actual duration. How-
ever, since the predicted duration is extended similarly for all
configurations, such an approximation rarely influences the
correctness of selecting the optimal execution configuration.
As shown in Figure 10, we can identify the optimal execution
configuration with the help of the predictors. In this case,
the predicted optimal configuration is 54SMs/54SMs, which
is indeed the actual optimal spatial split ratio. We select part
of kernels with different start and end positions from the
inference applications in Table 1 and combine them to form
2260 kernel groups. In such a testbed, the percentage that
the predicted optimal configuration matches the real optimal
scheme is 96.2%. Even when unexpected contentions lead to
a sub-optimal kernel squad and applications are slowdowned
unevenly, the multi-task scheduler (§4.3) can still promise
fairness by selecting more kernels from lagged applications
when generating the next kernel squad.

4.5 Concurrent Kernel Management

In this subsection, we introduce the concurrent kernel man-
ager. We first explain how it realizes the spatial resource
management for kernels. Then, we introduce its operating
mechanism to interact with multiple GPU contexts.

4.5.1 Kernel resource management. There exist mul-
tiple methods that support computational resource restric-
tion, including software methods based on code transfor-
mation [66, 75]. However, code transformation methods are
intrusive and require additional registers and sharedmemory
for kernels, the extended latency is non-negligible (about 12%
on average in our testbed). Additionally, to ensure applica-
bility to modern commodity GPUs, we refrain from making
modifications to the hardware architecture.

We implement Bless onNvidia GPUs.While utilizingMPS,
we employ the cuCtxContext_v3 API to create a context
with SM affinity which specifies the number of SMs that the
context is limited to use. Then the device queues bonded
to this context and all the kernels sent to them would be
spatially restricted. Bless can also be adapted for other GPUs

24 SMs

84 SMs

SMs
time

N/A

N/A

Device queues

Concurrent
Kernel Manager

Kernel squad execution

Client1 control

Kernel finishing signal
Client2 control

Kernel squad generation (§ 4.3)
Execution Cfg Determiner (§ 4.4) Next squad

Next squad

Client1
contexts

Client2
contexts

Resource restricted

Kernel
launch

Kernel
exec

Figure 11. Control flow of the concurrent kernel manager.

(e.g., AMDGPUs with the HIP runtime) with similar resource
management properties and kernel scheduling logic [48]. The
methodology of Bless is general for accelerators with spatial
and temporal sharing support.

4.5.2 GPU context switch. The concurrent kernel man-
ager is responsible for launching kernels to different GPU
contexts with runtime control. Launching kernels into differ-
ent contexts of a client by instant context switch can realize
the spatial-temporal sharing within the kernel squad (§ 4.4.1).

As shown in Figure 11, when a kernel squad is configured
with spatial sharing, kernels from different requests are first
launched into contexts that are spatially restricted. To fa-
cilitate spatial-temporal sharing within the squad, for each
co-running request, the kernel manager synchronously waits
for all the kernels from the previous context to finish before
sending kernels to the next context without SM restrictions.
Thus, for all the kernels of a request in this kernel squad,
there are 𝑐% spatially restricted. The left 1−𝑐% kernels are not
spatially restricted and would content for SMs with kernels
from other requests freely. The tunable parameter split ra-
tio 𝑐% provides a tradeoff between the no spatial-restriction
execution (Figure 7(a)) and the spatial partitioning execution
(Figure 7(b)), which is set to 50% empirically (§6.7).

5 Implementation

We build Bless in 5,000+ lines of C++ code. Bless provides
a gRPC interface for multiple users to deliver requests into
their own task queues. The inference applications are DNN
models compiled with nnfusion [45] with kernels generated
by TVM [6, 79]. The training applications are based on the
Pytorch framework.

At the deployment stage, each client is allocated a default
CUDA context with no resource restriction and several MPS
contexts with stringent resource restrictions. All kernel func-
tions of each application are then injected into the allocated
GPU contexts. The memory for each client is also allocated
in advance and mapped into corresponding contexts.
At runtime, the multi-task scheduler runs a background

process to collect the status of active requests from multiple
applications. The concurrent kernel manager runs in another

580

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 1. Applications used in benchmarks.

VGG R50 R101 NAS BERT

Inference
Duration (ms) 10.2 8.7 17.2 32.7 12.8
of kernels 31 80 148 458 382

Profile cost (s) 0.56 0.38 0.77 1.61 0.50

Training
Duration (ms) 11.2 25.2 40.1 157.8 186.1
of kernels 80 306 598 2824 5035

Profile cost (s) 0.49 0.59 0.82 6.31 6.88

process to take control of all established GPU contexts. Bless
launches kernels with a unified API LaunchKernel(kernel,
kernel_args, tag) when Bless is privileged to manage
the submission of operations. Otherwise, the unified API is a
wrapper of the CUDA runtimeAPIs (e.g., cudaLaunchKernel,
cudaMalloc, cudaMemset). It intercepts and remotes the
CUDAAPI calls from frameworks such as Pytorch, through a
dynamically linked library. The concurrent kernel manager
leverages the API to automatically send kernels to client-
owned contexts according to the kernel’s resource restric-
tion. The kernel manager listens on the return status of
kernels and synchronizes kernels in different contexts with
the cudaDeviceSynchronize() API to ensure the correct
execution sequence of kernels.

6 Evaluation

6.1 Experimental setup

We conduct our experiments on a GPU server, which consists
of one AMD EPYC 7302 16-Core CPU and one Nvidia A100
GPU (108 SMs and 40GB memory). The software environ-
ment is configured with CUDA 11.8 and Ubuntu 20.04.
Benchmarks.We use the inference and training of five

typical DNN models as the multi-user applications: VGG-
11(VGG) [57], ResNet50(R50) [35], ResNet101(R101) [35],
NasNet(NAS) [80], and BERT [62]. The applications are highly
heterogeneous using various compute cores, with kernel
durations varying from 3us to 3ms. The properties of ap-
plications used are shown in Table 1. Notice that inference
and training are based on different frameworks and compute
cores, providing us with highly heterogeneous applications,
with kernel durations varying from 3us to 3ms. For inference,
BERT uses tensor cores while other applications use CUDA
cores. For training, the applications are directly implemented
with Pytorch 2.1. Thus, the training duration is not propor-
tional to the corresponding inference duration. The profiling
cost is also not proportional to the application’s duration
because the SM affinity of applications are also different.
We use 5 inference workloads to test Bless under differ-

ent request loads: (A) High load, (B) Medium load, (C) Low
load, (D) Real-world trace load, and (E) Biased load. In the
workloads (A,B,C), the deployed applications issue requests
in closed-loop, while the interval between requests is set to
1/3, 2/3, 1 of each model’s solo-run latency (Thus, the QPS
of the low load is identical to the low load in Reef [33]).
Workload (D) involves two real-world traces: a widely-used

Table 2. Workloads used in benchmarks.

A B C D E

Workloads High
load

Medium
load

Low
load

Real-world
traces [5, 74]

Biased
load

Deployed
Models

5 models (symmetric),
R50 + 4 others
(asymmetric)

5 models
(mutual pair-wise)

R50 +
4 others

2-model quotas (13 ,
2
3), (

7
18 ,

11
18), (

4
9 ,

5
9), (

1
2 ,

1
2), (

5
9 ,

4
9), (

11
18 ,

7
18), (

2
3 ,

1
3)

4-model quotas (10%, 20%, 30%, 40%)
8-model quotas (5%, 5%, 10%, 10%, 15%, 15%, 20%, 20%)

Twitter request trace [5] in multi-user inference systems [20,
53, 71] and a cloud serverless function trace [74]. The work-
load(E) provides an extremely biased workload (consisting
of an R50 that provisions a quota of 8/9 GPU but the load is
low, as well as another application that provisions a quota
of 1/9 GPU but the load is high). Additionally, for training
workloads, we deploy two models to evenly share the GPU
for fair comparison among all sharing schemes for training.
The detailed configurations are shown in Table 2.

Comparing Targets.We first identify the right latency
targets of applications with specific GPU quota provisioned
and refer to the target as ISO. ISO is the baseline in which
each application is provisioned with the SM quota as as-
signed and running isolatedly using MPS. This is the ideal
scenario where multiple users are spatially partitioned with
no slowdown caused by interference.

We then compare Bless with systems that facilitate GPU
sharing among users with varying quotas, including Tem-
poral: Multiple applications temporally share the GPU
through round-robin time slice scheduling and context switch,
MIG [9], and GSlice [28]: Multiple inference applications
spatially share the GPU through MPS and an adaptive algo-
rithm is applied when workload changes.
We further compare Bless with mechanisms that evenly

share the GPU with typical scheduling schemes. Unbound:
Multiple applications share the same GPU unboundedly with
MPS or CUDA streams.Reef+:Reef [33] enables instant pre-
emption and biased GPU concurrency control. We improve
the controlled concurrency method of Reef and replace its
kernel padding with MPS to support even spatial partition-
ing. Reef+ is adopted in the inference scenario. Zico [41]:
Zico unboundedly shares the GPU within the iterations of
multiple training requests. Zico is adopted only in training.

6.2 Measuring the performance

We use a latency chart to illustrate the users’ performance
in the scenario where two applications are deployed on a
GPU. As shown in Figure 12, each point in the chart refers
to the average latencies of two applications’ requests under
a specific GPU quota assignment configuration.

The latency of pair-wise applications is constrained within
the mint green region. The origin of this region represents

581

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

Clos
er

is b
ett

er

Wider is better

Same GPU quota

Figure 12. The latency chart of two applications deployed
on a GPU with Bless. Case(a) and (b) are with symmetric
workloads. Case(c) deploys two applications with homoge-
neous kernels while Case(d) with heterogeneous kernels.

a scenario where two applications use the entire GPU inde-
pendently. The closer the points are to the origin, the lower
the average latencies of applications. Additionally, a wider
range of coordinates indicates the system’s ability to deploy
applications with more diverse quota configurations.

Thus, we propose two metrics to evaluate the efficiency of
a multi-user system. First, the average latency of requests
from different applications under a specific quota assign-
ment configuration. Second, the average latency deviation

across various quota assignments. Under a specific quota
assignment 𝑛 𝑗% for application 𝑗 , the baseline latency target
for the application is the ISO latency𝑇 𝑗 [𝑛 𝑗%]. The latency de-
viation of a system is then calculated as

∑
𝑗 max(𝑇 𝑗𝑠𝑦𝑠 [𝑛 𝑗%] −

𝑇 𝑗 [𝑛 𝑗%], 0). The larger the latency deviation, the worse the
performance of the mechanism under this certain quota as-
signment. The average latency deviation indicates the flexi-
bility of multi-user systems for various quota assignments.

6.3 Overall performance

We evaluate Bless and other approaches with heterogeneous
applications, workloads, and GPU quota assignments.

Performance with symmetric workloads. We first ex-
amine the reduction of end-to-end latencies when two appli-
cations share a GPU evenly. As shown in Figure 13, Bless
can provide at most 26.9%, 37.1% and 47.6% latency reduc-
tion in workload(A), (B), and (C) separately, compared to

schemes with other scheduling policies. For inference work-
loads, Bless reduces the latency by 37.3%, 34.2%, 21.1%, 16.5%,
and 13.5% on average compared to Temporal, MIG, GSlice,
Unbound, and Reef+ respectively. We also evaluate Bless
when all inference requests arrive continuously, in which
case the GPU is fully saturated and there are no bubbles that
can be utilized. Bless then provides a similar latency with
GSlice (with lower than 3% latency extension rooted from
scheduling overhead).
Bless can provide shorter latencies than other systems

especially when the request load is low. The phenomenon
is also observed in Figure 12. When the load is lower (Fig-
ure 12(b)), the end-to-end latency point is closer to the origin.
It is because when the load is low, Bless can (1) fully utilize
the bubbles that Temporal,MIG and GSlice waste, (2) orga-
nize the kernels reasonably to avoid the interfered execution
that prolongs the request latency with Unbound, and (3)
further shorten the execution of kernel squads than Reef+
leveraging precise resource management.

In the training scenario, Bless reduces the average latency
of a training epoch by 26.5%, 7.5%, 12.5% and 9.9% compared
to Temporal,MIG, Unbound, and Zico respectively. GSlice
and Reef+ are not compared in training because they are
designed only for inference systems.
Performance with uneven quotas. We then test the

average latency deviation of 5 symmetric deployed applica-
tions as well as 4 asymmetric deployed applications under
7 different quota assignment configurations with various
loads. As shown in Figure 14, Bless maintains a rather low
latency deviation. MIG fails to provide such diverse quota
configurations because of its fixed hardware isolation. The
average latency deviation of Temporal, GSlice, and Bless
is 14.3ms, 2.1ms, and 0.6ms, separately.

To be specific, in all 4 cases shown in Figure 12, the latency
of the application pairs is shorter than ISO under all quota
assignment configurations. Temporal performs the worst
because its GPU utilization is the lowest. GSlice endures
higher latencies than the isolated baseline because of the
interference between requests. Unbound and Reef+ can pos-
sibly provide latencies shorter than the isolated baseline with
even GPU quota assignment. However, since the execution
and resources of co-located kernels are not controllable in
Unbound and Reef+, the latency deviation is large under
various quota assignment configurations.

Performance with real-world traces.We use 10 mutual
pairs of 5 DNN inference applications to examine the per-
formance of Bless with real-world traces. With the twitter
trace, when the assigned quota for each client is 50%, Bless
reduces the latency by 18.4%, 20.5% and 7.3% compared with
Temporal,MIG and GSlice separately. When the assigned
quota for each application is uneven (1/3, 2/3), the latency
is reduced by 14% compared with GSlice and no latency
deviation compared with ISO. The latency reduction is lower
because the tenancy workload is dense and the extra bubbles

582

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

(a) Inference applications (b) Training applications

Figure 13. Average latency of two symmetric applications with even GPU quotas provisioned.

R50+R50
R101+R101

NAS+NAS
VGG+VGG

BERT+BERT
R50+R101

R50+NAS
R50+VGG

R50+BERT

0.1

1

10

L
at

. D
ev

ia
tio

n
(m

s)

Temporal MIG GSlice BLESS

Figure 14. Average latency deviation of 9 pair-wise appli-
cations with uneven GPU quotas. The Y-axis is in log scale.

10% 20% 30% 40%
4 BERT (bs=1)

20
40
60
80

Av
g

L
at

en
cy

 (m
s)

10% 20% 30% 40%
4 R50 (bs=8)

20
40
60
80

5% 5% 10%10%15%15%20%20%
8 BERT (batch size = 1)

10
20
30
40
50
60
70

Av
g

L
at

en
cy

 (m
s)

ISO
Temporal
GSlice
BLESS
Unbound

Figure 15. Performance of multiple co-located requests.

that can be utilized are not abundant. With the Microsoft
Azure Trace [74], a real-world function trace, Bless reduces
the latency by 49.3%, 41.2% and 32.1% compared with Tempo-
ral,MIG and GSlice separately on average. The reduction
mainly comes from the abundant bubbles originating from
the low load feature of this trace.

6.4 Beyond Pair-wise Sharing

In this subsection, we examine the ability of Bless to deploy
more than two applications. In the experiment shown in
Figure 15, the requests from 4 applications and 8 applica-
tions arrive at the same time. In this experiment, since the
optimal spatial partitioning configuration of kernels cannot
be determined at runtime in Reef+, we only compare Bless
with Temporal, GSlice, and Unbound.

When four applications co-run, Bless reduces the average
latency by 41.2% and 18.3% compared with Temporal and
GSlice. When eight applications co-run, the average latency

is reduced by 80.8% and 35.5% separately. Moreover, Bless’s
latency deviation is 0 in this scenario, while Temporal and
GSlice have an average 74𝑚𝑠 and 5𝑚𝑠 latency deviation
separately compared with ISO. Unbound does not support
uneven GPU quota assignment, and it provides approximate
latencies for all identical applications. Compared with ISO,
Unbound endures a 3.8𝑚𝑠 latency deviation. With the in-
crease in the number of co-located applications, the bubbles
with Temporal and GSlice drastically increase, and the in-
terference among requests deteriorates in Unbound. Bless
becomes more prominent with more co-located applications.
Performance with biased workloads. With the ex-

tremely biased workload(E), App2 consistently submits re-
quests to the GPU with extremely dense workloads. Then, as
shown in Figure 16, App1’s latency with GSlice is 6% longer
than ISO because of interference. Bless also suffers an av-
erage 9% latency increment because of its property to lazily
wait for the end of execution of kernel squads. The slight
sacrifice of App1’s latency brings the high throughput of the
co-located App2’s requests. Bless provides an average 2.2×
throughput improvement for App2 compared with GSlice.

6.5 Guaranteeing SLOs

Bless can natively guarantee the SLO of applications with-
out modifying any internal mechanisms. It is achievable by
simply replacing the isolated latency𝑇 [𝑛%] in §4.3.1 with the
required QoS target. We use two sets of experiments to test
the performance of Bless in promising SLOs: (a) The QoS tar-
get is tight (1.2× and 2× isolated latency for two applications
separately) and a medium workload (Workload(B)) is applied.
(b) The QoS target is loose (1.5× and 3× isolated latency) and
a heavy workload (Workload(A)) is applied. While Unbound
and GSlice cannot promise QoS with a 38.8% and 50.1%
of QoS violation on average, Bless has a merely 0.6% QoS
violation, indicating its superiority in guaranteeing SLOs.

6.6 Performance of kernel squads

Bless reduces the kernel squad duration by managing com-
puting resources delicately. In this subsection, we conduct
experiments in the scale of kernel squads to analyze the
effect of various proposed mechanisms in Bless.

583

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

VGG R50 R101 NAS BERT

20

40

60

A
pp

2
Q

PS

VGG R50 R101 NAS BERT

2
4
6
8

10
12
14

A
pp

1
L

at
en

cy
 (m

s) ISO
GSlice
BLESS

Figure 16. The performance of Bless when App1 (R50, 8/9
GPU) is deployed together with others (App2, 1/9 GPU).

[N+B]
20:180

[N+B]
30:170

[N+B]
40:160

0
1
2
3
4
5

D
ur

at
io

n
(m

s)

SEQ NSP SP Semi-SP

[B+R]
44:6

[B+R]
42:8

[B+R]
40:10

0

0.5

1

1.5

[N+R]
25:25

[N+R]
24:26

[N+R]
26:24

0
1
2
3
4
5

Figure 17. The kernel squad duration. The three application
pairs are {NAS+BERT}, {BERT+R50}, and {NAS+R50}.

Optimize the kernel squad. To analyze the effectiveness
of the execution configuration determiner in optimizing the
kernel squad, we select three pairs of applications and ob-
serve the kernel squad duration using different optimization
methods, as shown in Figure 17. SEQ refers to the scenario
where kernels are executed sequentially from one device
queue; NSP refers to the configuration where kernels are not
spatially restricted and contend freely for SMs; SP refers to
the scenario where kernels are strictly spatial partitioned
with the optimal configuration using MPS; Semi-SP refers
to how the spatial restrictions are removed for the last 50%
kernels of each request for better spatial-temporal sharing.

Compared with SEQ, the duration of squads with NSP, SP,
and Semi-SP is shortened by 6.5%, 12.9%, and 17.6% sepa-
rately. Semi-SP achieves the shortest kernel squad duration
because it not only reduces inefficient kernel overlapping,
as in NSP, but also capitalizes on the underutilized resources
resulting from imprecise spatial partitioning in SP.
Fine-grained analysis. In Figure 18, the requests from

two R50 applications arrive simultaneously and are sched-
uled by the multi-task scheduler at the same time. Request 1
is from an application that is assigned 70% GPU quotas while
request 2 is from an application assigned 30% GPU. Thus,
the multi-task scheduler selects more kernels from request 1
into the first several kernel squads, resulting in the earlier
finishing of request 1. Notice that in the third kernel squad
in Figure 18(a), the kernel squad is spatially isolated (78SMs
for request 1 and 30SMs for request 2) for a shorter duration,
according to the configuration determiner’s identification of
the optimal kernel squad configuration.
Bless can effectively compensate for prior sharing sys-

tems by eliminating bubbles within. As shown in Figure 18(b),
Zico coordinates the iterations of training epochs to reduce

Request2 latency: 16.57ms

t(ms)151050

Request1 latency: 12.61ms

w/ spatial
restriction

w/o spatial
restriction

no
concurrency

kernel squad
switch

(a) Two overlapped R50 requests arrive simultaneously. Green:
request1 kernels; Purple: request2 kernels.

15.33ms

13.16ms

13.74ms

185.90ms

173.75ms

156.07ms
One-round
execution

Training
Forward

Pass

Training
Backward

Pass
Zico

Zico
+

BLESS

12.40ms 86.33ms

Bubble

R50 BERT

42 SMs
66 SMs

32 SMs
76 SMs

(b) Bless reduces the training iteration latency on top of Zico.

Figure 18. The fine-grained analysis of Bless.

memory footprint. However, the unbounded sharing charac-
teristic induces bubbles that are not utilized. By organizing
the kernels within a round as a squad, Bless optimizes the
squad through the SP policy. The iteration latency is reduced
by 8.5% compared with Zico.

6.7 Impacts of hyper-parameters in Bless

In this subsection, we discuss the key parameters that influ-
ence the performance of Bless.

Kernel squad granularity. The maximum kernel count
per squad impacts the flexibility of Bless. The duration of
kernel squads in our evaluation ranges from 0.7ms to 10ms,
depending on the operator duration of diverse applications.
There is a tradeoff between the application latency and the
system’s ability to support various GPU quota assignments.
When the kernel count per squad is large, the overhead

of the kernel squad switch is trivial and the overall latency
is reduced. As shown in Figure 19(a), with the increasing of
the kernel count per squad, the average latency decreases
from 24.2ms to 20.6ms with an even GPU quota assignment.
However, a large kernel squad sacrifices scheduling flex-

ibility, thus restricting the ability to support various GPU
quota assignments. When the max kernel count per squad
is 20, Bless can provide a maximum 8/9 quota of the GPU,
according to the achievable latency. However, when the max
kernel count per squad is 100, the maximum GPU quota that
can be promised to each application is no larger than 3/4.
The granularity of the kernel squad is set to 50 in our testbed.

Split ratio in kernel squad execution. The split ratio 𝑐%
in the Semi-SP sharing scheme seeks a balance between the
no-spatial partitioning scheme and the strict spatial partition-
ing scheme within kernel squads. As shown in Figure 19(b),
the normalized duration of kernel squads reaches an optimal
point when 𝑐% = 50%. It should be noted that semi-spatial
sharing can only be optimal when spatial partitioning is
estimated to be better than no-spatial partitioning by the
performance estimators.

584

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

No spatial
partitioning

Strict spatial
partitioning

Optimal point

N
or

m
al

iz
ed

 L
at

en
cy

54.4% 45.3% 44.1% 42.8% 40.2%

Figure 19. The impact of key parameters in Bless.

w/o task
scheduler

w/o cfg
determiner

BLESS

Figure 20. Ablation study of Bless.

SM number of GPU. The benefits of Bless for applica-
tions are influenced by the number of SMs on a GPU. We
conducted an experiment using an Nvidia A100 GPU, lever-
aging MIG to control the number of usable SMs. With GPU
instances featuring different numbers of SMs, we run a mi-
crobenchmark where two symmetric R50 applications share
the GPU under low load (Workload(C)). As shown in Fig-
ure 19(c), as the number of SMs increases, the normalized
latency reduction of Bless decreases from 54.4% to 40.2%
compared to GSlice. This phenomenon results from the
combined effects of the GPU’s compute capability and the
application’s utilization: with a larger number of SMs, the
application is less likely to saturate all SMs, resulting in a
less significant latency reduction compared to MPS-based
sharing methods. Compared to GSlice, unbounded sharing
does not exhibit a stable trend in latency reduction due to
unpredictable interference. From the perspective of appli-
cations, those with higher original utilization benefit more
from Bless because they can better exploit GPU bubbles.

6.8 Ablation study

In this experiment, we maintain the ability of Bless to allow
applications to utilize the entire GPU when requests are
not overlapped, and analyze the impacts of the multi-task
scheduler and the execution configuration determiner on
the average latency of applications in Bless.
We apply the 5 symmetric pair-wise services with work-

load(B) and even 50% quotas for the comparison in the abla-
tion study as shown in Figure 20. Compared with the com-
plete Bless, the Bless without the multi-task scheduler can

not dynamically control the kernel number from each active
request, thereby extending the average latency of services
by 16.5%. The Bless without execution configuration deter-
miner prolongs the average latency by another 7.6% because
it lacks thorough searching to find the optimal execution
configuration for kernel squads.

6.9 Scheduling overhead

The overhead of Bless primarily comes from three runtime
operations that may hinder optimal GPU utilization.

1. The kernel squad switch: When a kernel squad finishes
its job, the concurrent kernel manager synchronizes with
the multi-task scheduler to start the execution of the next
kernel squad. The synchronization overhead is 20𝑢𝑠 . Within
the kernel launching time of the first kernel in each kernel
squad, the GPU is also idle. The average kernel launching
duration is merely 3𝑢𝑠 .
2. The GPU context switch: When the concurrent kernel

manager decides to switch the control of kernel launching
from one GPU context to another through MPS, there will
exist a vacuum period of about 50𝑢𝑠 . This idle period would
not hinder the execution of kernels in other device queues.
3. The overspending of the multi-task scheduler: When

the multi-task scheduler on the host side runs longer than
the kernels on the device side, the GPU waits for the sched-
uler. We test the average scheduling time per kernel: the
multi-task scheduling (3.7𝑢𝑠), the execution configuration
space searching (2𝑢𝑠), and the kernel squad generation (1𝑢𝑠).
Thus, as long as the average kernel execution duration is
larger than the scheduling duration (6.7𝑢𝑠), the overspending
problem would be eliminated.
Additionally, more GPU memory would be allocated for

each application to accommodate extra MPS contexts. An
MPS context typically consumes about 230MB GPU memory.

6.10 Discussion

Scheduling granularity. Bless schedules applications at
the kernel granularity on the host side. To reduce kernel
launching overhead and minimize CPU-GPU context switch-
ing, techniques such as CUDAgraphs [7] andHIP graphs [11]
allow for launching a sequence of kernels to the GPU with a
single API call. To support applications implemented with
these techniques, Bless can be adapted by either switching
the scheduling granularity from kernels to graphs for appli-
cations comprising multiple graphs, or by integrating the
kernel scheduler into the GPU driver [33].

Dynamic applications. For Bless to effectively allocate
GPU resources among applications, it requires knowledge of
each application’s deterministic runtime progress. Therefore,
Bless is best suited for stationary applications. For dynamic
applications, where the computation graph changes at run-
time, Bless must treat each separate compute DAG as an in-
dividual application and profile them during the deployment

585

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

stage. For example, in the inference of Large Language Mod-
els [39, 60], which exhibit an autoregressive computation
pattern, Bless could be enhanced by treating each forward
pass as a distinct application DAG for scheduling. An interest-
ing future work would be designing more efficient profiling
and modeling for dynamic GPU applications [25, 31, 72].
Resource management within kernel squads. Bless

only controls the computing resources (SMs) of kernels within
the squads to narrow the execution configuration space for
scheduling. In addition to SMs, there are also other resources
that can be managed at runtime, such as shared memory
and register usage for kernels. Careful management of these
resources may further reduce interference and improve the
performance of multi-tenant applications. Achieving this
may necessitate intrusive analysis of the applications’ ker-
nels at the deployment stage [56, 58].

7 Conclusion

In this paper, we propose Bless, a multi-user GPU system to
deploy multiple applications on a single GPU. Bless utilizes
the unused “bubbles” of a GPU to provide promised latency
for applications with specific quota provisioned. Bless sched-
ules kernel in units of fine-grained kernel squads and enables
precise resource management. We evaluate Bless with nu-
merous applications and workloads. As a GPU sharing sys-
tem, Bless reduces the average latency by 21.1% − 37.3% for
co-located applications compared to state-of-the-art systems
under various GPU quota assignments.

Acknowledgement

We thank our anonymous reviewers and our shepherd, Alexan-
der M. Merritt, for their valuable feedback. This work is
partially sponsored by the National Key Research and Devel-
opment Program of China (2023YFB3001504) and National
Natural Science Foundation of China (62232011, 62302302,
61832006). Quan Chen is the corresponding author.

References

[1] 2012. Nvidia CUDA Stream Management. https://docs.nvidia.com/
cuda/cuda-runtime-api/group__CUDART__STREAM.html.

[2] 2012. Nvidia Multi-Process Service. https://docs.nvidia.com/deploy/
mps/index.html.

[3] 2016. AMD ROCm Stream Management. https://rocmdocs.amd.com/
projects/HIP/en/develop/.doxygen/docBin/html/group___stream.
html.

[4] 2018. Nvidia Nsight Systems. https://developer.nvidia.com/nsight-
systems.

[5] 2018. Twitter request trace. https://archive.org/details/archiveteam-
twitter-stream-2018-04.

[6] 2019. Apache TVM. https://tvm.apache.org/.
[7] 2019. Getting Started with CUDA Graphs. https://developer.nvidia.

com/blog/cuda-graphs/.
[8] 2019. Nvidia Nsight Compute. https://developer.nvidia.com/nsight-

compute.
[9] 2020. Nvidia Multi-Instance GPU. https://www.nvidia.com/en-us/

technologies/multi-instance-gpu/.

[10] 2021. Alibaba Cloud cGPU. https://www.alibabacloud.com/help/en/
elastic-gpu-service/latest/what-is-the-cgpu-service.

[11] 2021. Graph management - HIP runtime. https://rocm.docs.amd.com/
projects/HIP/en/latest/doxygen/html/group___graph.html.

[12] 2022. Amazon Sagemaker. https://aws.amazon.com/sagemaker/.
[13] 2022. ChatGPT. https://openai.com/blog/chatgpt.
[14] 2022. Run multiple deep learning models on GPU with Amazon

SageMaker multi-model endpoints. https://aws.amazon.com/blogs/
machine-learning/run-multiple-deep-learning-models-on-gpu-
with-amazon-sagemaker-multi-model-endpoints/.

[15] 2022. Stable Diffusion. https://stability.ai/stable-diffusion.
[16] 2024. Delivering video content with fractional GPUs in containers on

Amazon EKS. https://aws.amazon.com/blogs/containers/delivering-
video-content-with-fractional-gpus-in-containers-on-amazon-eks/.

[17] 2024. Meta Data Centers. https://datacenters.atmeta.com/.
[18] Paula Aguilera, Katherine Morrow, and Nam Sung Kim. 2014. Fair

share: Allocation of GPU resources for both performance and fairness.
In 2014 IEEE 32nd International Conference on Computer Design (ICCD
14). IEEE, 440–447.

[19] Paula Aguilera, Katherine Morrow, and Nam Sung Kim. 2014. QoS-
aware dynamic resource allocation for spatial-multitasking GPUs. In
2014 19th Asia and South Pacific Design Automation Conference (ASP-
DAC 14). IEEE, 726–731.

[20] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020.
Batch: machine learning inference serving on serverless platformswith
adaptive batching. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 20). IEEE, 1–15.

[21] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. 2017.
Effisha: A software framework for enabling efficient preemptive sched-
uling of gpu. In Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP 17). 3–16.

[22] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Bay-
max: Qos awareness and increased utilization for non-preemptive
accelerators in warehouse scale computers. ACM SIGPLAN Notices 51,
4 (2016), 681–696.

[23] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. 2022. Serving heterogeneous machine learn-
ing models on {Multi-GPU} servers with {Spatio-Temporal} sharing.
In 2022 USENIX Annual Technical Conference (ATC 22). 199–216.

[24] Marcus Chow, Ali Jahanshahi, and DanielWong. 2023. KRISP: Enabling
Kernel-wise RIght-sizing for Spatial Partitioned GPU Inference Servers.
In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA 23). IEEE, 624–637.

[25] Weihao Cui, Zhenhua Han, Lingji Ouyang, Yichuan Wang, Ningxin
Zheng, Lingxiao Ma, Yuqing Yang, Fan Yang, Jilong Xue, Lili Qiu, et al.
2023. Optimizing dynamic neural networks with brainstorm. In 17th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 797–815.

[26] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng,
Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li, et al. 2021. Enable
simultaneous dnn services based on deterministic operator overlap and
precise latency prediction. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC 21). 1–15.

[27] LorenzoDematté andDavide Prandi. 2010. GPU computing for systems
biology. Briefings in bioinformatics 11, 3 (2010), 323–333.

[28] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020.
Gslice: controlled spatial sharing of gpus for a scalable inference plat-
form. In Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC 20). 492–506.

[29] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. Turbotrans-
formers: an efficient gpu serving system for transformer models. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 21). 389–402.

586

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://rocmdocs.amd.com/projects/HIP/en/develop/.doxygen/docBin/html/group___stream.html
https://rocmdocs.amd.com/projects/HIP/en/develop/.doxygen/docBin/html/group___stream.html
https://rocmdocs.amd.com/projects/HIP/en/develop/.doxygen/docBin/html/group___stream.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://tvm.apache.org/
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.alibabacloud.com/help/en/elastic-gpu-service/latest/what-is-the-cgpu-service
https://www.alibabacloud.com/help/en/elastic-gpu-service/latest/what-is-the-cgpu-service
https://rocm.docs.amd.com/projects/HIP/en/latest/doxygen/html/group___graph.html
https://rocm.docs.amd.com/projects/HIP/en/latest/doxygen/html/group___graph.html
https://aws.amazon.com/sagemaker/
https://openai.com/blog/chatgpt
https://aws.amazon.com/blogs/machine-learning/run-multiple-deep-learning-models-on-gpu-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-multiple-deep-learning-models-on-gpu-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-multiple-deep-learning-models-on-gpu-with-amazon-sagemaker-multi-model-endpoints/
https://stability.ai/stable-diffusion
https://aws.amazon.com/blogs/containers/delivering-video-content-with-fractional-gpus-in-containers-on-amazon-eks/
https://aws.amazon.com/blogs/containers/delivering-video-content-with-fractional-gpus-in-containers-on-amazon-eks/
https://datacenters.atmeta.com/

Improving GPU Sharing Performance through Adaptive Bubbleless Spatial-Temporal SharingEuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[30] Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak Chadha, and Michael
Gerndt. 2023. FaST-GShare: Enabling efficient spatio-temporal GPU
sharing in serverless computing for deep learning inference. In Pro-
ceedings of the 52nd International Conference on Parallel Processing
(ICPP 23). 635–644.

[31] Yue Guan, Yuxian Qiu, Jingwen Leng, Fan Yang, Shuo Yu, Yunxin Liu,
Yu Feng, Yuhao Zhu, Lidong Zhou, Yun Liang, et al. 2024. Amanda:
Unified Instrumentation Framework for Deep Neural Networks. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
24). 1–18.

[32] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving {DNNs}
like clockwork: Performance predictability from the bottom up. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 443–462.

[33] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen.
2022. Microsecond-scale preemption for concurrent {GPU-
accelerated}{DNN} inferences. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22). 539–558.

[34] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen,
Cheng Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia
Tang. 2015. Djinn and tonic: Dnn as a service and its implications
for future warehouse scale computers. ACM SIGARCH Computer
Architecture News 43, 3S (2015), 27–40.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR 16). 770–
778.

[36] Zicong Hong, Jian Lin, Song Guo, Sifu Luo, Wuhui Chen, Roger Wat-
tenhofer, and Yue Yu. 2024. Optimus: Warming Serverless ML Infer-
ence via Inter-Function Model Transformation. In Proceedings of the
Nineteenth European Conference on Computer Systems (EuroSys 24).
1039–1053.

[37] Saksham Jain, Iljoo Baek, ShigeWang, and Ragunathan Rajkumar. 2019.
Fractional GPUs: Software-based compute and memory bandwidth
reservation for GPUs. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 19). IEEE, 29–41.

[38] Onur Kayıran, Adwait Jog, Mahmut T Kandemir, and Chita R Das.
2013. Neither more nor less: Optimizing thread-level parallelism for
GPGPUs. In Proceedings of the 22nd international conference on Parallel
architectures and compilation techniques (PACT 13). IEEE, 157–166.

[39] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles (SOSP 23). 611–626.

[40] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gon-
zalez, et al. 2023. {AlpaServe}: Statistical multiplexing with model
parallelism for deep learning serving. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). 663–679.

[41] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and
Myeongjae Jeon. 2021. Zico: Efficient {GPU} memory sharing for con-
current {DNN} training. In 2021 USENIX Annual Technical Conference
(ATC 21). 161–175.

[42] Yu-Shiang Lin, Chun-Yuan Lin, Che-Rung Lee, and Yeh-Ching Chung.
2019. qcuda: Gpgpu virtualization for high bandwidth efficiency. In
2019 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom 19). IEEE, 95–102.

[43] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and
Minyi Guo. 2022. VELTAIR: towards high-performance multi-tenant
deep learning services via adaptive compilation and scheduling. In
Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS
22). 388–401.

[44] Lixian Ma, Haoruo Chen, En Shao, Leping Wang, Quan Chen, and
Guangming Tan. 2024. POSTER: FineCo: Fine-grained Heterogeneous
Resource Management for Concurrent DNN Inferences. In Proceedings
of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming (PPoPP 24). 451–453.

[45] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020.
Rammer: Enabling holistic deep learning compiler optimizations with
{rTasks}. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 881–897.

[46] Kelvin KWNg, Henri Maxime Demoulin, and Vincent Liu. 2023. Paella:
Low-latency Model Serving with Software-defined GPU Scheduling.
In Proceedings of the 29th Symposium on Operating Systems Principles
(SOSP 23). 595–610.

[47] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li
Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
2017. Tensorflow-serving: Flexible, high-performance ml serving.
arXiv preprint arXiv:1712.06139 (2017).

[48] Nathan Otterness and James H Anderson. 2021. Exploring AMD
GPU scheduling details by experimenting with “worst practices”. In
Proceedings of the 29th International Conference on Real-Time Networks
and Systems (RTNS 21). 24–34.

[49] Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govin-
darajan. 2013. Improving GPGPU concurrency with elastic kernels.
ACM SIGARCH Computer Architecture News 41, 1 (2013), 407–418.

[50] Mohit Pandey, Michael Fernandez, Francesco Gentile, Olexandr Isayev,
Alexander Tropsha, Abraham C Stern, and Artem Cherkasov. 2022.
The transformational role of GPU computing and deep learning in
drug discovery. Nature Machine Intelligence 4, 3 (2022), 211–221.

[51] Manos Pavlidakis, Giorgos Vasiliadis, Stelios Mavridis, Anargyros
Argyros, Antony Chazapis, and Angelos Bilas. 2024. G-Safe: Safe GPU
Sharing inMulti-Tenant Environments. arXiv preprint arXiv:2401.09290
(2024).

[52] Yajuan Peng, Shuang Chen, Yi Zhao, and Zhibin Yu. 2024. {UFO}: The
Ultimate {QoS-Aware} Core Management for Virtualized and Over-
subscribed Public Clouds. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). 1511–1530.

[53] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. {INFaaS}: Automated model-less inference serv-
ing. In 2021 USENIX Annual Technical Conference (ATC 21). 397–411.

[54] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU cluster engine for accelerating DNN-based video anal-
ysis. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP 19). 322–337.

[55] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. 2011. vCUDA: GPU-
accelerated high-performance computing in virtual machines. IEEE
Trans. Comput. 61, 6 (2011), 804–816.

[56] Sudipta Saha Shubha, Haiying Shen, and Anand Iyer. 2024. {USHER}:
Holistic Interference Avoidance for Resource Optimized {ML} Infer-
ence. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). 947–964.

[57] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[58] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion:
Interference-aware, Fine-grained GPU Sharing for ML Applications.
In Proceedings of the Nineteenth European Conference on Computer
Systems (EuroSys 24). 1075–1092.

[59] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014.
{GPUvm}: Why Not Virtualizing {GPUs} at the Hypervisor?. In 2014
USENIX Annual Technical Conference (ATC 14). 109–120.

587

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Shulai Zhang, et al.

[60] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

[61] Yash Ukidave, Charu Kalra, David Kaeli, Perhaad Mistry, and Dana
Schaa. 2014. Runtime support for adaptive spatial partitioning and
inter-kernel communication on gpus. In 2014 IEEE 26th International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD 14). IEEE, 168–175.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural information processing
systems (NeurIPS 17) 30 (2017).

[63] Guanhua Wang, Kehan Wang, Kenan Jiang, Xiangjun Li, and Ion
Stoica. 2021. Wavelet: Efficient DNN trainingwith tick-tock scheduling.
Proceedings of Machine Learning and Systems (MLSys 21) 3 (2021), 696–
710.

[64] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2016. Simultaneous multikernel GPU: Multi-
tasking throughput processors via fine-grained sharing. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA 16). IEEE, 358–369.

[65] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2017. Quality of service support for fine-
grained sharing on GPUs. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA 17). 269–281.

[66] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. 2015.
Enabling and exploiting flexible task assignment on GPU through
SM-centric program transformations. In Proceedings of the 29th ACM
on International Conference on Supercomputing (ICS 15). 119–130.

[67] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023.
Transparent {GPU} sharing in container clouds for deep learning
workloads. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). 69–85.

[68] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. {AntMan}: Dynamic
scaling on {GPU} clusters for deep learning. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20).
533–548.

[69] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali
Annavaram. 2016. Warped-slicer: efficient intra-sm slicing through
dynamic resource partitioning for gpu multiprogramming. ACM
SIGARCH Computer Architecture News 44, 3 (2016), 230–242.

[70] Feng Yan, Yuxiong He, Olatunji Ruwase, and Evgenia Smirni. 2018. Effi-
cient deep neural network serving: Fast and furious. IEEE Transactions
on Network and Service Management 15, 1 (2018), 112–126.

[71] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019.
{MArk}: Exploiting Cloud Services for {Cost-Effective},{SLO-
Aware} Machine Learning Inference Serving. In 2019 USENIX Annual
Technical Conference (ATC 19). 1049–1062.

[72] Shulai Zhang, Weihao Cui, Quan Chen, Zhengnian Zhang, Yue Guan,
Jingwen Leng, Chao Li, and Minyi Guo. 2022. PAME: precision-aware
multi-exit DNN serving for reducing latencies of batched inferences.
In Proceedings of the 36th ACM International Conference on Supercom-
puting (ICS 22). 1–12.

[73] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen, Daniel Edward
Mawhirter, Bo Wu, Chao Li, and Minyi Guo. 2019. Laius: Towards
latency awareness and improved utilization of spatial multitasking
accelerators in datacenters. In Proceedings of the ACM international
conference on supercomputing (ICS 19). 58–68.

[74] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and cheaper serverless computing on harvested resources. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems

Principles (SOSP 21). 724–739.
[75] Han Zhao, Weihao Cui, Quan Chen, Youtao Zhang, Yanchao Lu, Chao

Li, Jingwen Leng, and Minyi Guo. 2022. Tacker: Tensor-cuda core
kernel fusion for improving the gpu utilization while ensuring qos.
In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA 22). IEEE, 800–813.

[76] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng,
Chao Li, Wenli Zheng, Li Li, and Minyi Guo. 2019. Themis: Predicting
and reining in application-level slowdown on spatial multitasking
GPUs. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS 19). IEEE, 653–663.

[77] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. Hsm: A hybrid
slowdown model for multitasking gpus. In Proceedings of the twenty-
fifth international conference on architectural support for programming
languages and operating systems (ASPLOS 20). 1371–1385.

[78] Xia Zhao, Zhiying Wang, and Lieven Eeckhout. 2018. Classification-
driven search for effective sm partitioning in multitasking gpus. In
Proceedings of the international conference on supercomputing. 65–75.

[79] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
et al. 2020. Ansor: Generating {High-Performance} tensor programs
for deep learning. In 14th USENIX symposium on operating systems
design and implementation (OSDI 20). 863–879.

[80] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018.
Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR 18). 8697–8710.

588

	Abstract
	1 Introduction
	2 Related Works
	3 Background and Motivation
	3.1 Workflow of GPU sharing
	3.2 Inefficiencies of existing GPU sharing solutions
	3.3 Opportunities

	4 Bless Methodology
	4.1 Overview of Bless
	4.2 Offline Profiling
	4.3 Multi-task Scheduling
	4.4 Execution Configuration Determiner
	4.5 Concurrent Kernel Management

	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Measuring the performance
	6.3 Overall performance
	6.4 Beyond Pair-wise Sharing
	6.5 Guaranteeing SLOs
	6.6 Performance of kernel squads
	6.7 Impacts of hyper-parameters in Bless
	6.8 Ablation study
	6.9 Scheduling overhead
	6.10 Discussion

	7 Conclusion
	References

