GOPipe: A Granularity-Oblivious Programming Framework for
Pipelined Stencil Executions on GPU

Chanyoung Oh
University of Seoul
alspacell@uos.ac.kr

Jidong Zhai
Tsinghua University, BNRist
zhaijidong@tsinghua.edu.cn

ABSTRACT

Recent studies have shown promising performance benefits when
multiple stages of a pipelined stencil application are mapped to
different parts of a GPU to run concurrently. An important factor
for the computing efficiency of such pipelines is the granularity
of a task. In previous programming frameworks that support true
pipelined computations on GPU, the choice has to be made by
the programmers during the application development time. Due
to many difficulties, programmers’ decisions are often far from
optimal, causing inferior performance and performance portability.

This paper presents GOPipe, a granularity-oblivious program-
ming framework for efficient pipelined stencil executions on GPU.
With GOPipe, programmers no longer need to specify the appropri-
ate task granularity. GOPipe automatically finds it, and dynamically
schedules tasks of that granularity for efficiency while observing
all inter-task and inter-stage data dependencies. In our experiments
on six real-life applications and various scenarios, GOPipe outper-
forms the state-of-the-art system by 1.39X on average with a much
better programming productivity.

CCS CONCEPTS

« Computing methodologies — Parallel computing method-
ologies; - Computer systems organization — Parallel archi-
tectures; » General and reference — Performance.

KEYWORDS

Programming Framework; GPU; Optimizations

ACM Reference Format:

Chanyoung Oh, Zhen Zheng, Xipeng Shen, Jidong Zhai, and Youngmin
Yi. 2020. GOPipe: A Granularity-Oblivious Programming Framework for
Pipelined Stencil Executions on GPU. In Proceedings of the 2020 Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT
’20), October 3-7, 2020, Virtual Event, GA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3410463.3414656

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT °20, October 3—7, 2020, Virtual Event, GA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8075-1/20/10...$15.00
https://doi.org/10.1145/3410463.3414656

Zhen Zheng
Alibaba Group
james.zz@alibaba-inc.com

Xipeng Shen
North Carolina State University
xshen5@ncsu.edu

Youngmin Yi
University of Seoul
ymyi@uos.ac.kr

Grayscale i Histogram Resize Feature 3 Scannin,
Yy i | Equalization Extraction ; e

Figure 1: Pipeline of Face Detection with a stencil depen-
dence. Computation of a pixel depends on a tile of pixels in
the previous stage.

1 INTRODUCTION

Pipelined stencil applications are stencil applications consisting of
multiple stages of computations, and in each stage, the computation
follows a stencil pattern (i.e., a kernel applies to each tile of pixels).
The output of a stage is the input of the next stage. Fig. 1 shows Face
Detection pipeline [13], which consists of one recursive stage and
four other stages to detect faces in an image. The Resize stage
and the Feature Extraction stage compute the stencil patterns
of 2 X 2 and 3 X 3, respectively.

As a fundamental form of parallelism besides data parallelism,
pipeline parallelism is inherent in a large array of applications in
various domains, ranging from face detection to network packet
processing, graph rendering, video encoding and decoding, and
various streaming data processing [8, 11, 17, 19, 24, 26, 31, 34, 39].
An effective capitalization of pipeline parallelism is essential for
meeting their relentless demands for higher throughput or respon-
siveness in modern computing.

In recent years, the problem has attracted strong interest [8, 33,
40] in using Graphics Processing Units (GPUs) to accelerate pipeline
applications. As a processor with tremendous parallel computing
power, GPU shows large potential for computing accelerations.
Meanwhile, its higher-level programming models make it much
easier for general software developers to program than alternative
choices (e.g., FPGA).

Despite promising performance shown in recently developed
programming frameworks, an important barrier stands, efficient
support of flexible granularities of tasks on GPU for each stage of
a pipeline. The barrier has been preventing pipeline application
developers from tapping into the full potential of GPU and the
existing programming frameworks.

https://doi.org/10.1145/3410463.3414656
https://doi.org/10.1145/3410463.3414656

Here, a task of a pipeline stage conceptually refers to a subset
of the result values that the stage needs to produce’. It is the sched-
uling unit of a stage. The processing of a task may involve one or
more GPU threads, but usually no more than a thread block.

For a stage in a pipeline, there are often many valid granularity
choices for a task. Consider an image smoothing stage that produces
a smoothed image with each pixel equaling the average of that
pixel and its neighbors in the image output by an earlier stage in
a pipeline. A task of the smoothing stage could be as large as the
entire image to produce, or as small as a tile or even just a single
pixel in the smoothed image.

Task granularity definition is essential for the performance of
pipeline applications on GPU as it sits at the center of a three-way
tradeoff, the tradeoff among parallelism, synchronization overhead,
and data locality. A large granularity could limit the amount of paral-
lelism and hence leaves GPU underutilized. While a fine granularity
can provide sufficient parallelism, it may cause more dependency
among workers in different stages and hence more synchroniza-
tions. It could also degrade data locality as spatially adjacent data
elements may be put into different fine-grained tasks processed
by different workers. Our experiments show that different granu-
larities on GPU could lead to over 6x differences in performance
(details in Sec. 5.2). Therefore, for a programming framework to
better support pipeline computations on GPU, it is important to
have the ability to transparently adapt task granularities. The adap-
tation needs to be across applications as well as the different usage
scenarios of an application. The suitable granularity often changes
with usage scenarios; for an application detecting faces in a stream
of input images, for example, the best granularity differs for images
of different resolutions and also input image streams of different
arrival rates.

No prior frameworks for pipeline executions on GPU provide
such a support. The few existing frameworks that support flexible
task granularities are primarily for pipelines built on CPU [23, 29].
Halide [29], for instance, uses GPU as a monolithic accelerator,
each time running the kernel of only one pipeline stage on GPUs; it
may fuse some kernels into one but supports no true cross-stage
pipelined computations on GPU. PolyMage [23] has no support of
GPU. Existing true GPU pipeline programming frameworks [33, 40]
use GPU more effectively, but they are all rigid in handling task
granularities. It is challenging to support flexible task granularity in
true pipelined executions on GPU in a user-transparent way when
the stages have stencil dependence. As the execution model is not
kernel-by-kernel, it cannot rely on kernel boundaries for implicit
synchronizations but demands efficient scheduling for coordinating
tasks of various granularities in different stages. A naive approach
would require users to write substantially different code for a stage
and for dealing with the interplay with other stages for different
task granularities. And the performance is often disappointing.
NVIDIA’s Cooperative Groups [15], with which more flexible syn-
chronization is possible, cannot help either if a stencil dependency
exists as a thread would then need to belong to multiple groups

In implementations of pipeline frameworks, a task is typically embodied with the set
of data the stage needs to process to produce the result values in the task. The term
“task” sometimes takes this meaning (e.g., in the context of “enqueue” or “dequeue” a
task).

which is not supported. Even if multiple task granularities are sup-
ported, to select the best ones for each stage, a programmer has to
develop many versions of code of different granularity definitions
and run them to identify the good choices for each usage scenario.
The process is tedious and time-consuming; often programmers just
pick a granularity most intuitive or convenient for programming
and use it for all usage scenarios, resulting in poor performance as
Sec. 5.2 will show.

This work proposes a granularity-oblivious concept for the design
and implementation of GPU pipeline programming frameworks. A
pipeline programming framework is granularity-oblivious if code
written in the framework can work on an arbitrary task granular-
ity, and the framework itself can automatically select and adapt
the granularity to suit each usage scenario of the application. The
process is transparent to application developers in the sense that
no code refactoring is needed to redefine the corresponding com-
putations or any other parts of the program.

The key challenge for creating a granularity-oblivious framework
for GPU is on the creation of a mechanism that can provide the flex-
ibility while incurring minimum runtime overhead. The problem is
especially challenging on GPU due to its massive parallelism: One
pipeline stage often runs concurrently by hundreds or thousands
of GPU threads; special designs are needed for coordination among
stages and management of task queues and other shared resources.

This paper presents our solution. A key idea is adaptive trigger-
based scheduling, which consists of the designs of three schemes for
tracking and notifying a stage of the readiness of tasks to resolve
the dependencies at various task granularities on the fly. It offers
the key to our efficient solution when coupled with three other
techniques. One is automatic task grouping, which automatically
generates code for a larger granularity from the code by program-
mers that handles tasks of the smallest granularity. The second is
granularity autotuning, which automatically selects the scheme best
suiting an application usage scenario with the highest efficiency.
The third idea is reference-type task representation, which decouples
the representation of a task from the data it needs to process to
significantly reduce the redundant data copies among tasks.

Based on a recent pipeline framework VersaPipe [40], we put
all the techniques together and create a new pipeline framework
called GOPipe (Granularity-Oblivious Pipeline framework). To our
best knowledge, GOPipe is the first GPU pipeline programming
framework that automatically determines the appropriate gran-
ularity of tasks in each stage of a pipeline and schedules them
dynamically without interventions from developers. GOPipe re-
moves the effort current frameworks require programmers to pay
to find good task granularities, while at the same time leading to
significant performance gains. Compared to the fixed granularity
schemes hard-coded in existing programming frameworks, GOPipe
improves the performance of several benchmarks and real-world
pipeline programs by 1.39X on average.

Overall, this work makes the following major contributions:

o It develops GOPipe, the first granularity-oblivious pipeline
programming framework for GPU.

o It proposes adaptive trigger-based scheduling to dynamically
schedule tasks of various granularities to achieve high effi-
ciency on GPU.

o It empirically demonstrates both the productivity and the
performance benefits of GOPipe.

2 BACKGROUND AND TERMINOLOGY

This section provides the background and terminology that are
necessary for readers to follow the rest of the paper.

Persistent Threads. Persistent threads [7, 14, 33, 40] are used
in most GPU pipeline frameworks. This work uses it as well. In
persistent thread executions, the number of GPU threads created
is limited such that all of them can be active and no one is in GPU
waiting queues. The kernel function is written such that each thread
iterates through a while loop and continuously tries to grab more
work to do after it completes one piece of work. Persistent threads
avoid frequent kernel launches and at the same time make global
synchronizations possible.

VersaPipe. Our solution builds on VersaPipe [40], an open-source
GPU programming framework for pipeline applications. It features
a support of a variety of pipeline execution models on GPU:

¢ Run to completion (RTC). RTC organizes all stages of a
pipeline into a single kernel. The execution of a thread goes
through all the stages from the beginning to the end.

e Kernel by kernel (KBK). In KBK, multiple kernels are used
to realize a pipeline program, with each kernel implementing
one or multiple stages; these kernels are invoked one after
another.

e Megakernel. Megakernel [33] puts all pipeline stages into
one large kernel. Implemented with persistent threads, each
MegaKernel thread works in a while loop, grabbing new
work items continuously; here, one workitem is the opera-
tion of one stage of the pipeline on a task. Which stage to
use is decided by a runtime scheduler.

o Coarse Pipeline. In this model, the different stages of a
pipeline are assigned to different SMs, forming an SM-level
pipeline.

o Fine Pipeline. This model is similar to coarse pipeline, ex-
cept that the resource allocation is in a much finer grain;
multiple stages may share one SM.

These models have different pros and cons on the utilization
of GPU computing resource. For a pipeline program written in
VersaPipe API, VersaPipe automatically finds out the best pipeline
execution model for the program.

VersaPipe eases the creation of pipeline execution models, but
not the selection of task granularity. It requires the programmer to
choose the task granularity for every pipeline stage, and to code
both the operations of each stage and the scheduling among them
accordingly. As a result, changing the granularity of one stage
would require lots of code changes.

Terminology This part introduces some terms used in later dis-
cussions. A task refers to the work that produces a set of the result
values of a pipeline stage. A unit task is a task that produces the
minimal set of the result values, or unit output. For image process-
ing, for instance, a unit task of a stage is typically the work that
produces one pixel in the output of that stage. A unit input is the
input that a unit task uses to produce a unit output. Unit input di-
mension is the size of a unit input. For example, the unit output of

GOPipe runtime
Task
scheduler
Granularity

cont

(3) Runtime deployment

Pipeline Unit task GOPipe
topology definition autotuner

Model
Execute() | —p selection _—
{
‘I', +
e } Granularity
adjustment

(2) Execution model &
grain size tuning

(1) User description

Figure 2: Overall structure and workflow of GOPipe.

the Resize stage in Fig. 1 is a single pixel in the output of the stage,
and its unit input is a set of 2 X 2 pixels in the output of the stage
prior to Resize; the unit input dimension is 2 X 2. A unit stride is
defined as the distance between the unit inputs of two adjacent unit
tasks. For instance, the unit stride shown in Fig. 1 is (2, 2) as there is
no overlap between two adjacent unit inputs (i.e., 2 X 2 tiles). Task
granularity is the size of a task, which could consist of a group of
adjacent unit tasks. The size of the entire output of a stage is called
the stage output dimension. In general, to produce the entire result
of a stage, a unit task needs to be invoked as many times as the
stage output dimension.

3 OVERVIEW OF GOPIPE

GOPipe is the first programming framework that enables granularity-
oblivious programming of pipeline applications on GPU. Fig. 2
shows its workflow and major components.

When developing a pipeline program in GOPipe, a user needs to
specify only the structure of the pipeline and the computation of
each stage. She has no need to worry about what granularity is the
best to use for a stage, or how to schedule the tasks. GOPipe takes
care of them automatically.

At a high level, GOPipe works as follows. First, GOPipe takes
as input the pipeline structure in a form of directed acyclic graph
(DAG), where the nodes represent the pipeline stages and the edges
represent the task queues between stages. For each stage in a DAG,
users describe the computation for a unit task, and specify parame-
ters such as stage output dimension, unit stride, as well as unit input
size. If not all data in a unit input are used, the stencil dependency
pattern within the tile should be given. (Although it is possible to
automatically recognize the patterns from the code, the current
implementation of GOPipe focuses on runtime support rather than
static code analysis; so we leave that part for the future.)

Then, GOPipe parses the specified pipeline structure, instan-
tiates and initializes the stages. It employs a reference-based task
representation and includes the buffer allocation for each stage.
Based on user-specified unit task code and parameters as well as
the dependency patterns, GOPipe selects the appropriate task grain
size for each of the pipeline stages and the execution model via its
autotuner. If the selected grain size is not unit task size, GOPipe
materializes the new grain size through automatic task grouping.

Finally, the framework launches GPU kernels in form of persis-
tent threads. A Cooperative Thread Array (CTA) dequeues a task
from the task queue, and the task is then processed by the threads
in that CTA. After processing, the CTA does not enqueue the newly
produced task into the task queue of the next stage, but writes the

void FeatureExtraction::execute(Taskltem data) {
unsigned char* src = data.src; // data has only a reference
unsigned char res = 0;
for (int j=0; j<3; j++)
for (int i=0; i<3; i++)
if (src[1*3+1] > src[j*3 + i]) res += (1 << (j*3+i));
write(res, data);

RN

}

Figure 3: An example of unit task of Feature Extraction
stage in Face Detection.

produced output to the buffer of its own stage. Then, it updates
a flag or relevant counters to indicate the readiness of the output.
When all the required data items for a task are ready, the trigger-
based task scheduler of GOPipe enqueues the ready task into the
task queue of the next stage. GOPipe uses reference-type task repre-
sentation to represent a task, which helps avoid unnecessary data
movements (details in Sec. 4.1). Its carefully designed scheduling
algorithm helps minimize delays in the execution of the stages.

4 GOPIPE FRAMEWORK

This section presents the key techniques of GOPipe. We start with
two concepts, unit task specification and reference-type task, and then
describe three schemes we have designed for efficient trigger-based
scheduling and their respective pros and cons. After explaining
automatic task grouping, we describe the autotuner.

4.1 Unit Task and Reference-Type Task
Representation

In GOPipe, programmers need to specify the unit task computation
of each stage in an execute() function. Fig. 3 shows an example
of unit task specification of a feature extraction stage, which
computes binarization of the pixels in data, a 3 X 3 patch.

In conventional task-based programming frameworks, the pro-
duced output is directly enqueued into the task queue of the next
stage, which can cause redundant data copies, especially for stencil
pipeline applications. In such applications, a task usually consumes
a tile of data produced by the previous stage, and the tiles consumed
by adjacent tasks often overlap. As each of the tiles is treated as a
standalone task and is enqueued into the task queue, the overlapped
parts end up being copied multiple times.

The reference-type task representation used in GOPipe avoids
the problem. As Fig. 4 shows, GOPipe equips each stage with a
frame buffer that resides in global memory. As already mentioned,
once a task has been processed in a stage, the output is not directly
put into the task queue of the succeeding stage. Instead, the output
is written into a frame buffer, and later, concise references to the
frame buffer that indicate the range of data to be consumed by the
task are enqueued into the task queue by the task scheduler.

The format of the reference is the starting location (e.g., the top
left cell in a 2D stencil) of the data in the frame buffer. There is no
need to specify the range of the data in the reference, as it is the
same for all tasks in that stage. As data are not directly embedded
into a task, this design avoids redundant data copies across tasks.

The similar concept to the reference-type task representation
has been introduced in previous work [28, 41], in which it helps
them avoid redundant copies between producers and consumers.

{7777;;;;ﬁ;77773 frame
flag | buffer 3 flag buffer

check
readiness

check
readiness

sta
Tri

ge B
gger

enqueue()

TR

reference
type task

dequeue()

Figure 4: The trigger-based pipeline execution model in
GOPipe.

////, Task is ready to run.
e | f

311
3 [3]2]

readiness counter
(4:ready)

Snapshot of buffer
(a) (b)
Figure 5: Counter-based integrated task scheduling.

In GOPipe, it is used to efficiently support flexible task granularity;
no matter how the tasks are grouped (Sec. 4.3), the reference to data
for the grouped task can be easily calculated by GOPipe, which
allows users to only specify the computation as a unit task.

Note that a buffer is allocated to a stage when it is instantiated,
and if there is frame-level parallelism, having more than one buffer
for one stage can help prevent the potential write blocking.

After understanding these concepts, we are ready to see a key
technique in GOPipe for scheduling tasks of an arbitrary gran-
ularity. It is worth noting that the separation of data from task
representation also offers conveniences for task scheduling as we
will see next.

4.2 Trigger-Based Task Scheduling

A major challenge for enabling granularity-oblivious programming
frameworks is efficiently tracking the status of tasks of various gran-
ularities, the readiness of their dependent data items, and schedul-
ing the tasks effectively when they are ready to run. We tackle the
challenge by designing three scheduling mechanisms, with two of
them decoupling computation and scheduling to minimize the in-
terference from scheduling operations on computations. The three
mechanisms feature different strengths and weaknesses, provid-
ing the set of options the autotuner (Sec. 4.4) can pick to provide
efficient support for various pipeline program execution scenarios.

4.2.1 Counter-Based Integrated Task Scheduling. In some cases,
finding a ready task for the next stage could be done efficiently
at the time of writing the output data item, which can avoid the
overhead of running a separate scheduler for each stage. Our first
designed scheduling mechanism takes this integrated scheme. For
a stage (say A), it maintains a readiness counter for each task of its
next stage (say B). When A calls the APIwrite() to output a result
data item into the frame buffer, the API internally conducts a series

Buffer Flag Buffer Flag Buffer Flag Buffer Flag Buffer Flag Buffer Flag

alblc||W|[W|W a bjc |W
d|e W3 d|e W W
g W g [wlo]

WiW 0 alb|c W
o D:rﬂ dle

g

(1) write output
(2) update flag (1) check flags
(2) compare-and-swap flag(s)
Trigger III III Trigger III
for B for B

[% = 11 il
for B

(3) enqueue trigger task

(2)

(3) enqueue ready task(s)

(b) (©)

Figure 6: Illustration of event-driven decoupled task scheduling.

of operations to increment the readiness counters that correspond to
the tasks of B that need to use that data item. A task is put into the
task queue of B when its readiness counter reaches m, the number
of data items needed by a task in B, as it indicates that the task is
ready to run.

Fig. 5 gives an illustration of the counter-based scheduling. Fig.
5(a) shows the current state of the frame buffer where the size of
the data range for a task of the next stage is 2 X 2. The values of
the corresponding readiness counters are shown in Fig. 5(b). As the
top left 2 x 2 tile is all filled with values, the first counter value is 4,
indicating that the corresponding task is ready for the next stage
to run.

This scheduling mechanism avoids the needs and associated
overhead of a separate runtime scheduler. The lightweight schedul-
ing is efficient when the task grain size is large and the total number
of tasks is not. But if the task grain size is small and there are many
tasks in the application, the scheduling operations inside write()
could cause much delay to the computation of a stage as those
operations are on the critical path of write() function. Checking
the dependency from the side of the producing stage is complex:
If the produced output data item belongs to multiple tasks in the
succeeding stage(s), then it has to increment as many counters as
the number of tasks.

4.2.2 Timer-Based Decoupled Task Scheduling. This design miti-
gates the problems of the former design by decoupling scheduling
and computation. A separate module, Trigger, is implemented ded-
icated to tracking the status of data items and readiness of tasks.
The module is implemented as a GPU kernel, periodically invoked
such that it can run concurrently on GPU with the pipeline compu-
tations.

Our design is to associate a flag buffer with each stage, and
use a three-state flag to track the status of each data item in the
frame buffer of that stage. Let F be the flag in A’s flag buffer that
corresponds to a data item x in A’s frame buffer. The value of F can
be one of the following, indicating the different status of the task
that produces x:

(1) NotQueued: The task has not been enqueued into A’s task
queue yet. This is the initial state of the flag.

(2) Queued: The task either has been enqueued into the task
queue or is being processed.

(3) Written: The task has finished its job and x has been written
into the frame buffer.

Each time when Trigger is launched, it checks all the flags to
determine the readiness of each task for the next stage and enqueues

those ready tasks only when the status of the tasks is NotQueued.
In this design, the only scheduling-related work done by the API
write() is to set the tri-state flag after it puts a data item into
the frame buffer, making it much more efficient than in the first
scheduling mechanism.

Although this decoupled design avoids the main drawbacks of
the first design, it has its own weaknesses. First, the repeated in-
vocations of the Trigger kernel incur overhead, both the launching
overhead and the overhead caused by Trigger's GPU resource usage.
The overhead could be substantial when the tasks are produced
quickly and Trigger needs to be called frequently. Finding the best
invocation frequency is tricky as the pipeline may have dynamic
behaviors and the producing and consuming rates of stages may
change. Second, lots of work by Trigger could be useless. At each
invocation, it checks all flags, but sometimes only a small portion
of the flags have been updated since its previous launch.

4.2.3 Event-Driven Decoupled Task Scheduling. Our third design
tries to mitigate the drawbacks of the second design by replacing
timer-based triggering with event-based triggering. This event-
driven decoupled scheduling is designed as follows. The scheduling
module Trigger for a pipeline stage becomes a stage itself in that
pipeline. The Trigger for B becomes a stage between A and B and
it has its own task queue as the other stages in the pipeline do.
When an output is written by A, it also enqueues an item into the
task queue of Trigger. The item represents a request for Trigger to
check the readiness of those tasks for stage B that are dependent
on this output. If a task is indeed ready, Trigger inserts it into the
task queue of stage B. This event-driven scheme helps avoid some
of the main issues in the timer-based design presented earlier.

To see how the Trigger algorithm works, suppose that the unit
input size of B is 2 X 2. The three-state flag introduced in Sec. 4.2.2
is also used in this scheme. When a task e of A writes the data item
into the output frame buffer, buffer(e), flag(e) turns to Written as
shown in Fig. 6(a) and an item referring to buffer(e) is enqueued into
the task queue of Trigger for B. Note that flag(e) had been changed
from NotQueued to Queued by the Trigger for A, though it is not
depicted in the figure. After Trigger dequeues the item, it checks the
readiness of all tasks of stage B that are dependent on the data item
in buffer(e). For example, the tasks j, k, [, and m in Fig. 6(b) need
to be checked as all of them require the data in buffer(e). Suppose
Trigger finds that all flags of the elements in the tile required by a
task j of Bis Written, it checks the flag of the task, flag(j). If the flag
is NotQueued, it sets it to Queued, and then puts the task j into the
task queue of B. Setting the flag is done atomically, and if the value

Counter Timer Event

Figure 7: The strengths and weaknesses of each scheduler.
Each metric (A,B,C,D,E) is explained in Sec. 4.2.4.

of the flag is Queued, it does not enqueue it again. If any element
in the tile is not Written, Trigger simply does nothing; it might be
tempting to think that in this case, Trigger should re-enqueue that
task into its own task queue for future checking. That is actually
not necessary because when that data item whose flag was not
Written is written, all tasks that are dependent on it and have not
yet been enqueued into stage B will be automatically checked again.

The event-driven feature of this mechanism helps it avoid the
drawbacks of the second design, and its decoupling feature helps it
avoid the shortcomings of the first design. In contrast to the inte-
grated scheduling scheme, the decoupled scheduling scheme allows
us to run Triggers on a dedicated SM(s), not on the same SMs that
run the stages. Since Triggers are isolated in the dedicated SM(s),
the large register usage of Triggers cannot affect the performance
of the stages. As the previous two mechanisms, this scheme has
its own weaknesses: The Trigger stage in the event-driven scheme
could affect performance for the contentions in accessing the glob-
ally maintained task queues especially when task granularities are
too small as every task invokes the Trigger stage at the end of its
execution.

4.2.4 Comparison among Schedulers. Fig. 7 illustrates the charac-
teristics of the proposed task schedulers. Each scheduler has its
own strengths. The metrics are as follows.

A. Register usage This metric indicates the usage of register
files for the scheduling routines. The counter-based integrated
scheduler consumes much more register files as the scheduling
code is integrated while the code for the other schedulers are de-
tached. Note that large register usage does not necessarily degrade
performance; it provides higher instruction-level parallelism (ILP)
which may lead to better performance if thread-level parallelism
(TLP) is already enough.

B. Invariance on the number of tasks The scheduling routine
for the counter-based and event-driven schedulers is invoked as
many times as the number of tasks. It could incur large overhead if
the task granularity is small and there are many tasks. The timer-
based scheduling is less influenced by the number of tasks as the
Trigger is waked up periodically regardless of the number of tasks.

C.Invariance on the number of stages In case there are many
stages, scheduling overhead of the timer-based scheduler increases
since it employs as many Triggers as the number of stages. Without
the optimal periods, there could be many meaningless invocations
of Trigger.

D. SM-level parallelism The scheduling routines for the timer-
based and event-driven schedulers are detached from the computa-
tion, and employ a dedicated SM to work, which may decrease the
peak performance.

[e]2]2]3] [e 1]2 3] [e 1 2 3]

//
\ ><

] \
stage 8 [o]1] [e]1]

stride= 1 stride= 2 stride= 1 stride= 2
input dim= 3 input dim= 4 input dim= 2 input dim= 1

(a) (b) (<) (d)

Stage A [e]1]2]3]
\

Parameters

Figure 8: Examples of task grouping for a simple 1D stencil.

E. Simplicity of control This metric indicates how easy it is to
achieve the optimal performance. Finding the best period for the
timer-based scheduler is tricky.

The quantitative comparisons on the metrics among schedulers
will be given in Sec. 5.1.

4.3 Task Grouping

The task grouping scheme in GOPipe centers around flexible yet
efficient task re-definitions. It requires no user’s interference at all.
It does it by grouping adjacent unit tasks into a larger task based
on reference-based task representations.

The dependence between tasks in stencil kernels is determined
by the first location and the last location (e.g., the top-left and the
bottom-right corners in a 2D stencil) of the dependent tasks within
the input dimension in the producer stage(s). Thus, the inter-task
dependence can be expressed by several parameters such as input
dimension, stride, the task grain sizes of the producer and consumer
stages, and so forth, as well as the location of the tasks in the frame
buffer. GOPipe takes as input such parameters for unit tasks from
the users. Fig. 8 illustrates an example with a simple 1D stencil. It
consists of two pipeline stages A and B where stage A produces
the input of stage B. The boxes represent the tasks and the lines
represent the dependence: for example, a (unit) task of B depends
on three (unit) tasks of A in Fig. 8(a). If task grouping is applied,
GOPipe automatically derives new parameters for a coarse task
based on the given unit task parameters. Fig. 8(b) shows the case
where two unit tasks of B are grouped into a single task; the single
task of B now depends on four tasks of A. The new stride, for
instance, can be calculated by multiplying the unit stride, 1, and
the task grain size of B, 2 (i.e., the number of grouped tasks), which
is 2. On contrary, the input dimension of B becomes smaller in case
the tasks of A are grouped. An extreme example is the coarsest
configuration shown in Fig. 8(d) where the whole unit tasks in
each of both stages form a single task. Only one dependence exists
between two stages in this case (e.g., the input dimension is 1).

The grouped task is treated the same as a single unit task. The
scheduling routine will be invoked only once for a grouped task at
the end of its computation by the GOPipe API (e.g., write()), and
will update the counters or the flags based on the aforementioned
parameters. For this, each auxiliary data structure such as the readi-
ness counter or the flag for dependency tracking represents the
state of the corresponding coarse task rather than a unit task. Sup-
pose that the three tasks along x-axis in Fig. 6(c) are grouped. The
flag{a,b,c} is then set as Written when all output of the grouped
task is put into the buffer. Trigger also checks the readiness of all
the next tasks that require at least one output in the grouped task
(j and k in Fig. 6(c)).

A CTA dequeues a single (larger) task from the task queue, and
threads in the CTA process the unit tasks that the dequeued task
is comprised of. If the task grain size is larger than the number
of threads in the CTA, the threads in the CTA iterate through a
loop to process the task. On the contrary, if the task grain size is
smaller than the number of threads, the CTA dequeues multiple
tasks from the task queue to ensure that no thread is left idle.
Since the computation of the task is implemented by calling the
computation code of a unit task, GOPipe does not require any
re-compilation, making the task granularity adjustment easy and
efficient.

GOPipe allows for grouping adjacent tasks in the same stage
along any axis or their combinations. The task grouping keeps the
tasks in a stage in equal size to avoid introducing load imbalance.
GOPipe’s task grouping has a very little overhead, including just
one indirection to the buffer for a grouped task, which is negligible
in most cases.

4.4 Autotuner

While GOPipe allows applications to have arbitrary task granularity
transparently without modifying the code, finding the appropriate
granularity by manual efforts is still tedious due to its large design
space. GOPipe provides an autotuner that automatically finds the
good task grain size for each stage, as well as the suitable scheduling
mechanism to use.

The auto-tuning tries each kind of the scheduling schemes. For
each scheduling scheme, it searches for the appropriate granulari-
ties in an iterative manner. In each iteration, it finds the best task
granularity for each stage one by one. As the granularity in the
later stage could change the best granularity of a former stage, this
process repeats until either convergence or a maximum number
of iterations (3 in our experiments) are reached. The search for
the best granularity for a stage starts from the largest size and
decreases gradually. On sampled benchmarks (Sec 5), we observe
that the auto-tuning method finds near-optimal values; the perfor-
mance is above 98% of that produced by the granularities found by
exhaustive search.

In addition, the autotuner inherits the autotuning feature in-
cluded in the base pipeline framework [40] for searching for appro-
priate execution models. Although in most cases, persistent thread
based execution models work well, there are cases where the sim-
pler kernel-by-kernel execution model with global synchronization
works better, especially when the kernel invocation is not very
frequent or most of stages have sufficient data-parallelism. There-
fore, GOPipe autotuner evaluates all possible execution models and
returns the best configurations. Users are not required to take any
additional efforts.

5 EVALUATION

To test the efficacy of GOPipe, we evaluate it with six real-world
pipeline applications, which cover different stencil dependencies.
The machine is equipped with NVIDIA GTX 1080Ti GPU running
CUDA 8.0 and Intel Xeon E5-2630 CPU. We study the performance
in both batch and streaming settings; the former has a set of inputs
ready to process by the pipeline, while the latter has a stream of
inputs flowing in continuously. For performance measurement, we

repeat each measurement 50 times; as the observed variance is neg-
ligible (<0.9%), we report the average as the reported performance.
We in addition report the productivity benefits.

Table 1: Pipeline applications used for evaluation. (KBK:
Kernel-by-kernel, MK: Megakernel, CP: Coarse pipeline)

Application Abbr. | Execution model | Scheduler
HotSpot HS MK Counter
Cell CL MK, CP Counter
Image Pyramid 1P MK, CP Event
Face Detection FD MK, CP Counter
Local Laplacian Filters LF KBK, MK, CP Event
Box Filter BF KBK N/A

5.1 Results in the Batch Setting

In the batch setting, a given collection of several inputs are fed into
each of the pipeline benchmarks. We compare the performance
to two baselines. One is VersaPipe [40], the state-of-the-art frame-
work that supports true pipeline executions on GPU; the other is
Halide [29], an efficient DSL(Domain Specific Languages)-based
framework for image processing on heterogeneous systems, which
uses GPU as a monolithic accelerator. Table 1 lists various pipeline
applications used in the experiment including execution models
and schedulers used for each application in GOPipe. The auto-
tuning took from 36 minutes (Boxfilter) to 75 minutes (Local
Laplacian Filters).

The implementations of Image Pyramid and Face Detection
on VersaPipe are from the authors of VersaPipe; the task granulari-
ties were determined and hard coded by the previous authors. They
used a whole image as the task granularity for most stages except
the final stage of Face Detection, which uses tasks of the finest
granularity as no inter-task dependence exists after the last stage.
The other four programs on VersaPipe are implemented by us. They
use the finest task granularity as it gives 2-3X better performance
than using an image as the granularity.

It is important to note that although Halide includes an auto-
scheduler for tuning loop schedules [1], the lead author of that
work told us that the GPU support of the schedules is not ready to
use. We hence worked with Halide authors to manually tune the
schedules of the benchmarks. The schedules of HotSpot and Local
Laplacian Filters used in our evaluation on Halide are provided
by the authors of Halide, and the schedule of Face Detection is
also verified by them?. We manually tuned GPU schedules for other
applications and report the best performance we have achieved.
The evaluated schedules, including function inlining, are vector-
ize, unroll, reorder, split, fuse, compute_at, compute_root, and some
combinations of them.

5.1.1 Benefit over VersaPipe. In our experiments, we observe that
the main performance benefit of GOPipe over VersaPipe are from
better task granularity and efficient scheduling. VersaPipe provides
enqueue and dequeue APIs to enable task-parallel execution and
scheduling on GPUs, but contains no task scheduler or the capabil-
ity to resolve inter-task dependencies; users need to write their own
code. Consequently, the programmer’s choices about task granular-
ities are limited and often far from the optimal due to the lack of an

2Q0ur thanks to the Halide authors for their great help.

BHalide OVersaPipe BGOPipe

HS CL 1P FD LF BF Average
Figure 9: Performance comparison of GOPipe with Ver-
saPipe and Halide. The exact times are reported in Sec. 5.1.3.

efficient dependency tracking. For example, Image Pyramid and
Face Detection in VersaPipe only have the coarsest task granu-
larity in most stages, which results in a limited data-parallelism,
and also inferior performance. We also find that even if the same
granularity is employed, VersaPipe cannot show its full potential
unless the programmer carefully resolves the dependencies among
different tasks (Sec. 5.3).

5.1.2 Comparison with Halide. The two major merits of Halide
over GOPipe are the use of shared memory and function fusion, or
inlining. The former is not supported in current GOPipe but the
latter is similar to the RTC (Run to completion) execution model
where the producer and consumer are merged into a single kernel.
As explained in [40], RTC model has a tradeoff between good local-
ity and large register usage. In VersaPipe and GOPipe, RTC is only
supported when the producer and consumer has one-to-one depen-
dency, while Halide can fuse the functions with stencil dependency
at the expense of redundant computation.

GOPipe can employ persistent threads for each stage and sched-
ules them dynamically so that it can execute the appropriate stage(s)
regardless of the producing-consuming rate between stages. Even
if a producing or consuming stage has dynamic workloads and the
rate changes, GOPipe can adapt to this variation. Moreover, any
stage that is ready can be executed whenever there are enough
resources. In contrast, Halide supports only a fixed producing-
consuming rate among fused stages and the stages that are not
fused cannot be executed at the same time even if there are idle
resources in the GPU.

In terms of productivity, users can describe algorithm and sched-
ule independently in Halide, which makes it easy to explore various
schedules. However, it is quite hard to find a good schedule due
to the limitation of the auto-scheduler for GPU, which seriously
limits the productivity. The programmer, sometimes, needs to write
more than 50 lines of code for schedule only for a 2-line computa-
tion. Also, both algorithm and schedule codes need to be manually
modified if the pipeline structure changes. In GOPipe, once users
describe the computation of each stage with the finest task granu-
larity, GOPipe will automatically adapt the algorithm with the best
configuration computed by the autotuner based on the computation
and the information about pipeline structures. Users do not need to
optimize their code or modify the computation code manually even
if they want to change the pipeline structure such as the order or
the number of instances of a stage in the pipeline.

5.1.3 Detailed results. As shown in Fig. 9, GOPipe outperforms
Halide on four out of the six benchmarks, and VersaPipe in every
case. The average speedups are 1.23X and 1.39X over the two prior
work respectively. The execution time here is end-to-end time,

0.5

=1

Relative performance

BF

Figure 10: Relative performance among GOPipe schedulers
with the batch setting used in Sec. 5.1 (Higher is better).

including the memory transfer time between host and device and
the kernel launch overhead.

Fig. 10 shows the comparison among schedulers. We found that
no scheduler is always the best and the choice of the scheduler
can lead to a large performance difference depending on the ap-
plications. Detailed comparisons will be given in the discussions
on each application. With auto-tuned granularities, the scheduling
overhead of the counter-based integrated scheduler is less than
3% of the total cycles of the computation of the tasks. For the two
decoupled schedulers, we assigned 3 SMs out of 28 SMs for Trigger.
That loss of SM-level parallelism turns out to influence performance
only slightly. The decoupling of the computation and the schedul-
ing could actually lead to better performance with the increased
SM occupancy thanks to the reduced register consumption. For
instance, if both the computation and Trigger stages of the event-
driven scheduler are assigned to the same SMs without decoupling,
the occupancy decreases to 53% in Face Detection. As finding the
best periods of the timer-based scheduler is tricky, we let Triggers
have the shortest periods so that no SM for Trigger goes idle.

We now give detailed discussions on each of the applications.
HotSpot & Cell HotSpot [16] iteratively solves partial differential
equations for each cell, which corresponds to a 5-point stencil.
Cell (Cellular automaton) has a 3-dimensional grid. Similar to
HotSpot, it continuously checks whether each cell is either live
or dead depending on the previous status of neighbor cells (i.e.,
3 X 3 X 3 stencil). The implementations are based on Rodinia [10].
We evaluate a 512 X 512 and a 512 X 512 X 16 grids for HotSpot
and Cell, respectively. In GOPipe, a recursive iteration in a stage
is implemented as an instance of the stage. GOPipe takes 18ms
for 500 iterations of HotSpot and 72ms for 100 iterations of Cell,
outperforming VersaPipe by 1.22x and 1.99x.

On both applications, the counter-based scheduler is chosen as
the best scheduler since the dependency patterns are simple; they
require only a few atomic operations.

Fig. 11(c) shows the execution times of Cell on various task grain
sizes. In Fig. 11, all stages have the same relative task grain size to
each stage output dimension. For instance, the grain size of 1/64 on
Cell may represent that 512X 8% 16 cells in each iteration comprise
one task as the stage output dimension is 512 x 512 x 16. Although
the best scheduler is the counter-based one, the efficiency of the
timer-based scheduler improves as the task grain size decreases.
This is because scheduling overhead of the other two schedulers is
proportional to the number of tasks while the number of Trigger
invocations in the timer-based scheduler is invariant on the task
grain size. Applications with many tasks would benefit from the
timer-based scheduler. On the other hand, the timer-based scheduler

becomes inferior when the number of iterations is large as shown in
Fig. 11(top). Since each iteration is implemented as a pipeline stage
in GOPipe, there is large overhead in maintaining the hundreds of
stages of Trigger (See Sec. 4.2.4).

In Halide, the code for four iterations is inlined into one ker-

nel, in which the intermediate values of the inlined iterations are
stored in shared memory. Based on the scheduler provided by the
authors of Halide, we did further optimization as we found that
execution time of Halide increases superlinearly with the number
of iterations: it took 10ms for 500 iterations and 237ms for 3,000
iterations on HotSpot. We divided the total number of iterations
into several subsets of iterations and placed a Buffer between the
subsets to prevent the propagation of some dependencies across
iterations. As a result, the running times of Halide for HotSpot be-
come 6ms for 500 iterations and 48ms for 3,000 iterations. Without
our manual optimization, GOPipe would be faster than Halide for
3,000 iterations, as Halide would take 107ms to finish.
Image Pyramid Image Pyramid [2] is a widely used technique
in many image processing applications. The purpose of Image
Pyramid is to provide a set of images of various sizes. Our im-
plementation is based on a prior study [24]. The pipeline consists of
three stages: Grayscale, Histogram Equalize, and Resize. The
Resize stage requires a 2 X 2 tile to produce one output pixel.

For a given UHD (3840 X 2160 X 3) input image, 6 resized images
are produced when the scale factor is 2. The Histogram Equalize
stage uses only one CTA due to insufficient parallelism. With the
conventional data-parallel model, the rest of the GPU would remain
idle unless a large batch is used, which would increase the latency.
Also, there are considerable load imbalance as each Resize stage
processes an image of different size; one produces a 1920 X 1080
image while another produces a 60 X 33 image. Due to the load
imbalance, the performance is degraded with the large granularity
in VersaPipe. On the contrary, GOPipe can distribute the different
workload efficiently with finer grain task scheduling.

As a result, the experiment with ten UHD images shows that

GOPipe with the event-driven scheduler shortens the processing
time to 83ms, a 1.72X speedup over Halide as shown in Fig. 9. The
counter-based and timer-based schedulers take 167ms and 91ms,
respectively.
Face Detection Face Detection finds out the location of faces
in a given image. The base implementation came from an earlier
work [24], which employs an LBP (Local Binary Pattern) approach.
All stages, except the second stage, have stencil patterns. The unit
input dimension in face detection ranges from 3 X 1 to 24 X 24.

Face Detection consists of five stages as Fig. 1 shows. Since, in
order to detect faces of arbitrary sizes, it resizes an image recursively
until the relative size of a search window reaches the pre-configured
size, the number of actual stages is much larger (17 for a 1920 x
1080 X 3 resolution image). The Scanning stage adopts a cascaded
classification [38] which consists of several weak classifiers. The
number of the weak classifiers to be processed depends on the input.
Halide is not suited to such a dynamic behavior since it mainly
aims at optimizing static affine computation. In Halide, all the weak
classifiers need to be processed regardless of the input.

GOPipe with counter-based scheduler takes 28.4ms in processing
ten 1920 1080 x 3 images. The other two schedulers have execution
times of 29.9ms and 28.5ms, respectively, as shown in Fig. 10. The

©—Counter —A~—Timer —@—Event

25 400 FreeTEEE====e===S =
’g 20 300 f--------o-mmmoofee-
~ 15
g
i 10
5
1 3 5 10 1 3 5 10 10 50 100 300
R Batch size Batch size Iteration
o 64 64
s o 640
en 320
5]
. 160
4
) 80
2 40
= 1 12 1/4 18 1/16 1 12 1/4 1/8 1/16
Relative task grain size
2 100 = 1000 100
) A
E=] D] Ao
RN M— A 100 5 10
3% A G
S A O Bemzo 1
=
5 g 1 & 1 0.1 f-mmmmme- B
8 o 01 0.1 SN
=
= 112 14 18 11 112 14 18 1/16 > O P L&
/ 8 1/16 ! 8 1 K \\5\ \u@ \@% {Ob
Relative task grain size AAENNEENG
(a) Local Laplacian Filters (b) Face Detection (c) Cell

Figure 11: Execution time for various batch sizes or itera-
tions (top), and for various task granularity (middle). The
number of Trigger invocations per task for the decoupled
schedulers (bottom).

counter, timer, and event-based schedulers consume 88, 56, and 80
registers per thread respectively. Each stage of Face Detection
has various task grain sizes: from 280 to 2M. Fig. 9 shows that
GOPipe outperforms VersaPipe and Halide implementations by
1.60%, 1.49X%, respectively.

In auto-tuning, the data sensitivity of Face Detection may take
effect. To figure out the impact, we additionally experimented with
a different input that has 10X more faces than the dataset for tuning,
and the performance difference turned out to be less than 10%.
Local Laplacian Filters Local Laplacian Filters [25] buildsa
Laplacian pyramid to accomplish an edge-aware image processing.
For 960 x 512 size of image, it deploys 37 pipeline stages with a
complex topology.

The workload of a task in each stage of Local Laplacian
Filters is usually tiny; a task may operate one addition and three
global memory accesses. For such cases, Halide can show its strength
for its function fusion optimizations, while the scheduling overhead
in GOPipe is relatively large; Halide takes 8ms for this application.

The determined execution model in GOPipe is a hybrid model as
shown in Table 1. As some stages have sufficient data-parallelism
while the computation is simple, those can benefit from KBK exe-
cution without dynamic scheduling. Out of 37 stages, 8 stages run
with the KBK model and the others adopt the Megakernel model.
The numbers of SMs assigned to these models are 15 and 10, re-
spectively. The remaining 3 SMs are assigned to the event-driven
scheduler, which runs with a coarse pipeline model. GOPipe takes
11ms which is slower than Halide but is 1.36X faster than VersaPipe.

While GOPipe cannot automatically fuse stages, we have ob-
served that some simple manual fusions in Local Laplacian Filters
on GOPipe can improve the performance shown in Fig. 9 by 1.26X,
narrowing the gap with Halide (8.4 ms vs. 8.0ms).

The event-driven scheduler is chosen as the best by the auto-
tuner (Fig. 10). As shown in Fig. 11(a), however, the counter-based

scheduler could have been the best if task grain size was smaller. It
benefits from higher ILP since TLP is limited due to the small batch
size.

Box Filter Box Filter [22] is an image convolution application
that smooths an image by converting each pixel value to the average
value of adjacent pixels. Its stencil size is equal to the filter size.
In this paper, the implementation of box filter consists of four
stages that convolve the image with two different filter sizes using
separable filters: 4 X 4 and 16 X 16.

For ten 3840 x 2160 images, GOPipe outperforms VersaPipe
and Halide by 1.18X and 2.06X, respectively. The running time
of GOPipe is 52ms. The autotuner chooses KBK as the execution
model and 63K elements as the granularity.

5.2 Streaming Scenario

This part evaluates Face Detection when inputs arrive in a steady
stream, which is a common usage scenario for such applications.
Setup The objective is to maximize throughput TH while achieving
a response time R shorter than a timing constraint D. One input
image arrives in every Gms. The response time is defined as the
longest time span between the arrival of an image and the attain-
ment of its processed result. In order to achieve a high throughput,
an input is first put into a buffer, and the whole buffer gets processed
at once on the GPU if the number of images in the buffer reaches a
threshold N. Such a scheme is common in streaming processing for
GPU as the performance of both data transfer and GPU processing
favor a set rather than one individual image. The response time R
for a given batch size N is then defined as follows:

R(N) = Twait (N) + Tprocess (N) + Ttransfer(N) (1)

where Tyyqait and Tprocess represent required time for forming a
batch (i.e., Towair (N) = (N — 1) X G) and processing time on GPU,
and Tyrgps fer (N) is the time to transfer N images.

Results To provide a comprehensive comparison, we manually
modified the program to derive three other versions for the bench-
mark on VersaPipe. Including the default VersaPipe version (VP-C),
we now have four version; they differ in task granularities, the
finest granularity (VP-F), quarter of an image (VP-Q), half of an
image (VP-H).

Fig. 12 reports the experimental results for a spectrum of stream-
ing settings. GOPipe achieves the best performance overall, show-
ing the benefits of its adaptive granularity and scheduler selection
for meeting the needs of various settings. In contrast, no version
of the VersaPipe implementation fits all. The task granularity of
GOPipe for each stage varies from 1 X 2 to 1920 X 1080 in the
scenarios shown in Fig. 12.

Fig. 12(a) shows the result for 1920 x 1080 x 3 (FHD) images
when the response time constraint D changes. VP-C could not
achieve a good throughput for the limited data-parallelism. More-
over, it misses the time constraint as required response time be-
comes shorter. GOPipe, for the adaptive granularity support, shows
the best performance for all cases.

Fig. 12(b) and 12(c) show the results when the time constraint
D is fixed to 80ms while the interval G changes for FHD and UHD
input image sizes. The shorter time interval with the fixed deadline
gives much room for forming a batch, yielding a higher throughput.
Even though the implementation in the largest grain could have the

largest throughput if the batch size becomes large enough, it cannot
work in this kind of streaming scenario where response deadline
exists. Fig. 12(d) and 12(e) show results when image resolution
varies. The time constraints are 40ms and 30ms, and the input
arrival rates are 30 FPS and 120 FPS, respectively.

5.3 Programming Productivity

Fig. 13(a) shows a pseudo-code for the Resize stage of Face Detection
application in VersaPipe with a case where the task granularity
corresponds to 1/9 of image. The implementation assumes that the
succeeding stages (Feature Extraction and another instance of
Resize) are defined to have the same granularity.

The tricky part is in checking readiness of the inputs for the task
that is to be scheduled (line 9-19). It should be described properly for
each given grain size and dependency between stages. The shown
implementation assumes that each task for two succeeding stages
can be enqueued when all adjacent patches (1/9 image each) are
prepared.

The code may not need modification if the size of patch is large
enough to meet the assumption. However, the assumption breaks
when the granularity becomes smaller and a set of adjacent patches
no longer contains enough data for the next stage. Code changes
would also need to be done if the following stages do not have the
same granularity. Further, The code entwined with the specification
of the topology of the pipeline (line 15-16). Much of the scheduling
code would need to be modified if there is a change in the topology.

In contrast, the code in GOPipe shown in Fig. 13(b) is much
shorter and simpler as no tracking or scheduling needs to be coded
by the programmer. As a result, the face detection application is
expressed in 80 lines of code in GOPipe while VersaPipe needs 333
lines for the same task granularity, which is obtained from GOPipe
autotuner. We find that the manual scheduling on VersaPipe re-
sulted in not only less productivity but also less efficiency: GOPipe
shows 1.16x still faster performance. The large code footprint and
many conditional branches of manual scheduling in VersaPipe for
complex granularities takes many registers and degrades the occu-

pancy.

6 RELATED WORK

Recently, some domain specific frameworks are developed for pipeline
computations on GPU. For instance, Patney et al. [27] design a
framework for graphics pipelines, and optimize both load balance
and data locality on GPU. Some systems [33, 36, 40] use persistent
thread on GPU [3, 14, 32] to improve the performance of scheduling
pipeline computations. Juggler [7] resolves dependencies among
tasks dynamically in a persistent thread execution but only con-
siders one-to-one matched dependence. On the other hand, there
have been many studies on task-based programming models on
CPUs, which employs dependence-aware dynamic task schedulers
similar to our work [5, 6, 9, 37]. However, the distinctive charac-
teristics of GPU make it a different problem. For instances, GPUs
support neither interrupts among cores nor the preemption of a
kernel, which can lead to deadlocks as a CTA that would release
the lock cannot be scheduled. Our proposed scheduling algorithms
are designed to address these complexities.

[<=< VP-F aa VP-Q m-@ VP-H VP-C ¢4 GP
00— 700 T T T 120— T T T 500 T T T 700 T T T

e @ -, I %
azso*-‘}\ 1 @ 600 N 1 & 100 @ 400 As | & 800 1
& - T 500} s g) a PN 2 500l |
&, 200} B/ H{ & DN L 80 Bl =] 300 RN v
= = = AN = L -, 4=
2 150/~ -z&':&;**—*i 3 400 " ‘»,,\ 12 ool s 13 AN 5 4001 i
5 . £, 300} O E a® £ 200} ERY £, 300} 1
2 100f7 B 1 3 200 "] R S e - “ W 3 200
2 BEEE = [== = ke -B- =X | E £ L N | e | |
= Lo A AA | S < N [o 100 W 2 ~
= 50 . = 1001 \ togd E 20 a1 F A < = 1001 i

2w n | ¢
ob o o T ol . . . f ol 0 L Y 0
10090 80 70 60 50 40 30 20 10 33 42 83 167 333 33 42 83 167 333 HD FHD UHD
Time constraint D [ms] Time interval G [ms] Time interval G [ms] Image resolution Image resolution
(a) (b) (c) (d) (e)

Figure 12: Throughput comparison over various settings. VersaPipe (VP) with four different task granularities are compared
with GOPipe (GP). The settings that miss the constraints are not denoted in the graph.

1: | int flag[Ng][9] = {0, ...};
2: [_ device__ void Resize::execute(TaskItem data) {
3: for (int i=threadldx.x;i<data.width/3*data.height/3;i+=blockDim.x) {
4: inty = (i*data.idx / 3) * data.width;
5: int x = (i*data.idx%3) % data.width;
6: data.dst[y][x] = interpolate(data.src, X, y, x+1, y+1);
7: }
8: __syncthreads(); / Tedious task scheduling routine begins below
9: for (int i=-1; i<=1; i++) {
10: for (int j=-1; j<=1; j++) {
11: int2 n = saturate_cast<0,2>(id%?3, id/3+j);
12: int next_idx =n.y*3 + n.x;
13: int readiness = atomicAdd(&flag[data.stage_id][next_idx], 1);
14: if (readiness == 9-1) {
15: if (data.stage_id != 18) enqueue<Resize>(...);
16: enqueue<FeatureExtraction>(...);
17: }
18: }
19: }
20: | }
(a)
1: | struct TaskItem { int input_dimension[], int stride[], ... };
2: | void Resize::execute(TaskItem data) {
3: unsigned char res = interpolate(data.src, 0, 0, 1, 1);
4: write(res, data);
S:

(b)

Figure 13: User-code comparison between VersaPipe (a) and
GOPipe (b).

None of previous work address the task granularity problem
for pipelined stencil programs. Some studies [4, 21] introduce the
concept of task granularity but in a KBK model, where there is no
need for resolving dependency between stages as they are implicitly
resolved at the kernel boundaries. Task granularity should be easily
parameterizable in such a case.

There are some recent systems optimizing image processing
pipeline with stencil dependency. In addition to Halide [29] and
PolyMage [23], Ravishankar et al. [30] propose a DSL for image
pipeline target both CPU and GPU, whose compiler deals with
GPU workload offloading and memory management. However,
these systems do not support dynamic scheduling in the pipelined
computation on GPU. Chugh et al. [12] propose an FPGA backend
for PolyMage.

Kim et al. [18] and Liao et al. [20] propose hardware-based ap-
proaches to optimizing pipelined execution of dependent kernels,
in which the dependency check is implemented in hardware. Tzeng

et al. [35] gives a careful study on scheduling of image processing
programs on GPU. It proposes a counter-based design to track de-
pendency between tasks, which shares some commonality with our
counter-based integrated scheduling. As we show, the scheduling is
subject to some major shortcomings for pipelined stencil programs.
They also propose a static scheduler that assumes the execution
order among thread blocks, in which case, threads can be idle wait-
ing for their execution order and should be careful in planning
the static schedule to avoid deadlocks. Two scheduling algorithms
in GOPipe decouple computation and scheduling in an efficient
way, hiding the tedious and error-prone burden arising from the
optimization with task granularity re-definition and the need for
synchronization among fine grain tasks. Their work studies sched-
uling designs but does not provide programming frameworks, and
gives no treatment to granularity selection or adaptation. A recent
work [41] studies efficient communication among pipeline stages
that run across the boundary between CPU and GPU. It provides
an efficient communication library, HiWayLib, but does not deal
with the selection of task granularities in pipeline applications.

7 CONCLUSION

We propose the first granularity-oblivious GPU pipeline program-
ming framework named GOPipe. GOPipe features an efficient dy-
namic scheduler for efficiently tracking and resolving task depen-
dencies, enabling automatically adaptation to different task granu-
larities. Experimental results show that GOPipe delivers averagely
1.39x speedup over existing pipeline programming frameworks.
It meanwhile eases pipeline program development on GPU by au-
tomatically adapting task granularity. (GOPipe will be released to
public upon publication.)

ACKNOWLEDGMENTS

This work was supported by Basic Science Research Program through
the National Research Foundation of Korea funded by the Ministry
of Education (No. 2018R1D1A1B07050463). In China, this work is
partially supported by the National Key R&D Program of China
(2017YFB1003103), Beijing Natural Science Foundation (4202031),
Beijing Academy of Artificial Intelligence (BAAI). Youngmin Yi,
Xipeng Shen, and Jidong Zhai are corresponding authors of the

paper.

REFERENCES

(1]

[2

(6

=

(71

[10]

(1]

[12

=
&

[14]

[15]

[16]

[17]

[18

[19]

[20]

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to optimize halide with tree
search and random programs. ACM Transactions on Graphics (TOG) 38, 4 (2019),
121.

Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and
Joan M Ogden. 1984. Pyramid methods in image processing. RCA engineer 29, 6
(1984), 33-41.

Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray traversal
on GPUs. In Conference on High PERFORMANCE Graphics. 145-149.

Prithayan Barua, Jun Shirako, and Vivek Sarkar. 2018. Cost-driven thread coars-
ening for GPU kernels. In Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques. ACM, 32.

Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday Ku-
mar Reddy Bondhugula, Jagannathan Ramanujam, Atanas Rountev, and Pon-
nuswamy Sadayappan. 2009. Compiler-assisted dynamic scheduling for effective
parallelization of loop nests on multicore processors. ACM sigplan notices 44, 4
(2009), 219-228

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In SC’12: Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1-11.

Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter, and Laxmi N Bhuyan. 2018.
Juggler: a dependence-aware task-based execution framework for GPUs. In Pro-
ceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 54-67.

Christian Bienia and Kai Li. 2010. Characteristics of workloads using the pipeline
programming model. In International Symposium on Computer Architecture.
Springer, 161-171.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J Dongarra. 2013. Parsec: Exploiting heterogeneity to enhance
scalability. Computing in Science & Engineering 15, 6 (2013), 36-45.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Workload Characterization, 2009. ISWC 2009. IEEE International
Symposium on. IEEE, 44-54.

Nagai-Man Cheung, Xiaopeng Fan, Oscar C Au, and Man-Cheung Kung. 2010.
Video coding on multicore graphics processors. IEEE Signal Processing Magazine
27, 2 (2010), 79-89.

Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. 2016. A
DSL compiler for accelerating image processing pipelines on FPGAs. In Parallel
Architecture and Compilation Techniques (PACT), 2016 International Conference
on. IEEE, 327-338.

Robert L Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes image
rendering architecture. In ACM SIGGRAPH Computer Graphics, Vol. 21. ACM,
95-102.

Kshitij Gupta, Jeff A Stuart, and John D Owens. 2012. A study of persistent
threads style GPU programming for GPGPU workloads. In Innovative Parallel
Computing (InPar), 2012. IEEE, 1-14.

M Harris and K Perelygin. 2017. Cooperative groups: Flexible CUDA thread
programming.

Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankaranarayanan,
Kevin Skadron, and Mircea R Stan. 2006. HotSpot: A compact thermal modeling
methodology for early-stage VLSI design. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 14, 5 (2006), 501-513.

Brucek Khailany, William] Dally, Ujval J Kapasi, Peter Mattson, Jinyung
Namkoong, John D Owens, Brian Towles, Andrew Chang, and Scott Rixner.
2001. Imagine: Media processing with streams. IEEE micro 21, 2 (2001), 35-46.
Gwangsun Kim, Jiyun Jeong, John Kim, and Mark Stephenson. 2016. Automati-
cally Exploiting Implicit Pipeline Parallelism from Multiple Dependent Kernels
for GPUs. In International Conference on Parallel Architectures and Compilation.
Kai Li and Jeffrey F Naughton. 2000. Multiprocessor main memory transaction
processing. In Proceedings of the first international symposium on Databases in
parallel and distributed systems. IEEE Computer Society Press, 177-187.
Wei-Cheng Liao, Yuan-Ming Chang, Shao-Chung Wang, Chun-Chieh Yang, Jenq-
Kuen Lee, and Yuan-Shin Hwang. 2018. Scheduling Methods to Optimize De-
pendent Programs for GPU Architecture. In Proceedings of the 47th International
Conference on Parallel Processing Companion. ACM, 13.

[21

[22]

[23

[24

[25

Iy
S

[27

[28

[29

[30

@
=

[32

[33

[34

@
2

[36

[37

[38

[41

Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic
optimization of thread-coarsening for graphics processors. In Proceedings of
the 23rd international conference on Parallel architectures and compilation. ACM,
455-466.

M]J McDonnell. 1981. Box-filtering techniques. Computer Graphics and Image
Processing 17, 1 (1981), 65-70.

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Polymage: Au-

tomatic optimization for image processing pipelines. In ACM SIGARCH Computer
Architecture News, Vol. 43. ACM, 429-443.

Chanyoung Oh, Saehanseul Yi, and Youngmin Yi. 2015. Real-time face detec-
tion in Full HD images exploiting both embedded CPU and GPU. In 2015 IEEE
International Conference on Multimedia and Expo (ICME). IEEE, 1-6.

Sylvain Paris, Samuel W Hasinoff, and Jan Kautz. 2011. Local Laplacian filters:
Edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 30,
4(2011), 68-1

Anjul Patney and John D Owens. 2008. Real-time Reyes: Programmable pipelines
and research challenges. ACM SIGGRAPH Asia 2008 Course Notes (2008).

Anjul Patney, Stanley Tzeng, Kerry A. Seitz, and John D. Owens. 2015. Piko: a
framework for authoring programmable graphics pipelines. Acm Transactions on
Graphics 34, 4 (2015), 1-13.

Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness and data-flow
compilation of OpenMP streaming programs. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 4 (2013), 1-25.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices 48, 6 (2013), 519-530.

Mahesh Ravishankar, Justin Holewinski, and Vinod Grover. 2015. Forma: A
DSL for image processing applications to target GPUs and multi-core CPUs. In
Proceedings of the 8th Workshop on General Purpose Processing using GPUs. ACM,
109-120.

Changhe Song, Yunsong Li, and Bormin Huang. 2011. A GPU-accelerated wavelet
decompression system with SPIHT and Reed-Solomon decoding for satellite
images. IEEE Journal of selected topics in applied earth observations and remote
sensing 4, 3 (2011), 683-690.

Tyler Sorensen, Alastair F Donaldson, Mark Batty, Ganesh Gopalakrishnan, and
Zvonimir Rakamari¢. 2016. Portable inter-workgroup barrier synchronisation
for GPUs. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 39-58.
Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter,
and Dieter Schmalstieg. 2014. Whippletree: Task-based Scheduling of Dynamic
Workloads on the GPU. Acm Transactions on Graphics 33, 6 (2014), 1-11.
Weibin Sun and Robert Ricci. 2013. Fast and flexible: Parallel packet process-
ing with GPUs and Click. In Proceedings of the ninth ACM/IEEE symposium on
Architectures for networking and communications systems. IEEE Press, 25-36.
Stanley Tzeng, Brandon Lloyd, and John D Owens. 2012. A GPU task-parallel
model with dependency resolution. Computer 8 (2012), 34-41.

Stanley Tzeng, Anjul Patney, and John D Owens. 2010. Task management for
irregular-parallel workloads on the GPU. In Proceedings of the Conference on High
Performance Graphics. Eurographics Association, 29-37.

Hans Vandierendonck, George Tzenakis, and Dimitrios S Nikolopoulos. 2011. A
unified scheduler for recursive and task dataflow parallelism. In 2011 International
Conference on Parallel Architectures and Compilation Techniques. IEEE, 1-11.
Paul Viola and Michael Jones. 2001. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, Vol. 1.
IEEE, I-511.

Feng Zhang, Jidong Zhai, Bingsheng He, and Shuhao Zhang. 2016. Understanding
Co-running Behaviors on Integrated CPU/GPU Architectures. IEEE Transactions
on Parallel & Distributed Systems (2016), 1-1.

Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, and Wen-
guang Chen. 2017. Versapipe: a versatile programming framework for pipelined
computing on GPU. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 587-599.

Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, and Wen-
guang Chen. 2019. HiWayLib: A Software Framework for Enabling High Per-
formance Communications for Heterogeneous Pipeline Computations. In Pro-
ceedings of the 24th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 153-166.

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Overview of GOPipe
	4 GOPipe Framework
	4.1 Unit Task and Reference-Type Task Representation
	4.2 Trigger-Based Task Scheduling
	4.3 Task Grouping
	4.4 Autotuner

	5 Evaluation
	5.1 Results in the Batch Setting
	5.2 Streaming Scenario
	5.3 Programming Productivity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

