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Abstract

Large Language Models (LLMs) have demonstrated remarkable performance across various downstream tasks, as evidenced by numerous
studies. Since 2022, generative Al has shown significant potential in diverse application domains, including gaming, film and television, media,
and finance. By 2023, the global Al-generated content (AIGC) industry had attracted over fanxiexian myfh26 billion in investment. As LLMs
become increasingly prevalent, prompt engineering has emerged as a key research area to enhance user-Al interactions and improve LLM
performance. The prompt, which serves as the input instruction for the LLM, is closely linked to the model’s responses. Prompt engineering
refines the content and structure of prompts, thereby enhancing the performance of LLMs without changing the underlying model parameters.
Despite significant advancements in prompt engineering, a comprehensive and systematic summary of existing techniques and their practical
applications remains absent. To fill this gap, we investigate existing techniques and applications of prompt engineering. We conduct a thorough
review and propose a novel taxonomy that provides a foundational framework for prompt construction. This taxonomy categorizes prompt
engineering into four distinct aspects: profile and instruction, knowledge, reasoning and planning, and reliability. By providing a structured
framework for understanding its various dimensions, we aim to facilitate the systematic design of prompts. Furthermore, we summarize
existing prompt engineering techniques and explore the applications of LLMs across various domains, highlighting their interrelation with
prompt engineering strategies. This survey underscores the progress of prompt engineering and its critical role in advancing Al applications,
ultimately aiming to provide a systematic reference for future research and applications.
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B 1 Introduction

Large Language Models (LLMs), such as GPT-4, have attracted
considerable attention due to their advanced capabilities in language
comprehension and generation [1-12]. Users can effectively leverage
the diverse competencies of LLMs by employing task-specific
instructions, or prompts [13—-16]. However, despite their impressive
LLMs
applications. For instance, while Reinforcement Learning from

abilities, encounter several challenges in practical

Human Feedback (RLHF) training enhances LLM conversational
skills,
assumption does not universally apply to all LLMs [17]. As a result,

making them more human-like, this anthropomorphic

informal prompts often yield responses from LLMs that lack the
professionalism and precision expected in various contexts. The

generalization capabilities of LLMs can lead to highly variable
outputs when presented with unstructured prompts. Additionally,
LLMs are susceptible to the “hallucination” problem, where
generated content may include logical fallacies, fabricated facts, and
data-driven biases. Consequently, designing prompts that yield more
professional, stable, and reliable responses remains a significant
challenge.

To address these challenges, extensive research has been dedicated
to developing and refining prompt engineering techniques, which are
essential for enhancing the performance of LLMs across various
tasks and application domains. Researchers have explored diverse
[18-20], task
instruction [21], knowledge augmentation [22-26], and recursive

methodologies, including role-play prompting
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prompting for reasoning [27-29]. For instance, Wei et al. [30]
introduced a linear method for recursive prompting known as the
“Chain-of-Thought” (CoT) approach. Although the CoT prompting
technique has shown promising results, its inherent greedy strategy
and linear structure introduce significant limitations, especially in
scenarios that demand nuanced reasoning and greater flexibility. In
response, Long [31] developed the Tree-of-Thought approach, which
utilizes a tree-based structure. Similarly, Yao et al. [32] proposed the
Graph-of-Thought approach, leveraging graph structures to enhance
reasoning capabilities. As the application of system-level techniques
in prompt engineering expands, LangChain!), a comprehensive
framework integrates prompt templates with various system
components to optimize prompts for LLMs. Although considerable
research has been conducted on

prompt engineering, a

comprehensive review of the topic remains lacking.

1.1 Related surveys

The closest to our work are surveys on prompt learning and prompt
engineering. Liu et al. [33] proposed the concept of prompt-based
learning and provided an overview of fundamental principles,
presenting a comprehensive range of prompt forms, including soft
and hard prompts. Wei et al. [34] explored LLM performance under
different prompt techniques, emphasizing its emergent abilities while
reviewing challenges and outlining future directions for enhancing
performance through prompt the
advancement of LLMs, researchers have increasingly focused on

model engineering. With

hard prompt-based engineering techniques for these models.
Recently, Sahoo et al. [35] has provided a description of the
techniques and applications of prompt engineering, dividing prompt
engineering techniques and applications into 12 categories within
fixed scenarios. Li et al. [36] summarized goal-oriented prompt
engineering techniques based on human reasoning principles. Some
surveys concentrate on specific aspects, such as the study [28], which
explores techniques aimed at enhancing reasoning performance,
while Yu et al. [29] discussed these techniques from a philosophical
reasoning perspective. Meanwhile, Mialon et al. [37] centered on
prompt augmentation.

Synergy. While existing surveys focus on summarizing prompt
engineering techniques within fixed scenarios, much less has been
done to provide a general framework for prompt engineering. Prompt
engineering is applied in numerous scenarios. Hence, classification
fixed to a specific scenario complicates its migration to new
application tasks. This calls for a taxonomy that encompasses the
entire pipeline for LLM applications across various use cases. In this
paper, we propose a universal prompt engineering taxonomy that
outlines the pipeline for designing effective prompts. This taxonomy
categorizes prompt engineering techniques from the perspective of
their underlying principles. Building on this taxonomy, we correlate
various applications of LLMs with prompt engineering techniques.
Furthermore, this taxonomy encompasses both fundamental and
advanced prompt techniques, offering detailed guidance on prompt
design. With the continuous advancement of prompt engineering
techniques, this taxonomy can be further extended.

) LangChain-ai. See www.langchain.com/ website, 2024
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1.2 Our contribution

We restrict our focus to discrete prefix prompts [38] rather than cloze
prompts [39,40], as modern LLM architectures (specifically decoder-
only models) demonstrate superior performance in various fields.
Furthermore, our study concentrates on hard (discrete) prompts
[33,41] rather than soft (continuous) prompts [33,42]. Finally, we
refine the scope of prompt engineering as the technology to modify
prompt content, allowing us to cover the full range of user and
system-level technologies. To the best of our knowledge, no existing
survey reviews prompt engineering techniques from a principled
perspective and summarizes their applications. In contrast to previous
surveys, the primary contributions of this paper are as follows:

e This survey represents the first comprehensive analysis of
prompt engineering, approached from the perspective of
human problem-solving principles. It includes an in-depth
exploration of the field’s background, taxonomy, applications,
and a summary of prompt engineering.

e We present a comprehensive taxonomy of prompt engineering
across four aspects: profile and instruction, knowledge,
reasoning and planning, and reliability. This taxonomy
provides a foundational framework encompassing essential
building blocks and methodological abstractions crucial for
prompt engineering.

e We summarize existing typical and state-of-the-art studies
according to their domains, providing a convenient reference
for researchers and developers.

e We generalize the taxonomy of methodologies as design
factors for successful prompt engineering and propose a
reasonable process flow for designing prompts.

M 2 Background

Prompt engineering is the technique of guiding model output through
the strategic design of task-specific instructions (prompts) without
altering model parameters. This approach has gained traction as a
means to enhance the performance of LLMs across various tasks and
fields. Research [43,44] indicates that the text input to LLMs
significantly influences their effectiveness in downstream tasks.
Therefore, prompt engineering serves as a strategic tool to guide
model outputs. Given the intrinsic link between prompts and LLM
functions, it is essential to design prompts with a nuanced
understanding of LLM capabilities.

2.1 LLMs’ Basic capabilities

Understanding the diverse capabilities of LLMs is crucial for creating
effective and task-specific prompts. Existing literature [45] highlights
that LLMs exhibit a broad range of capabilities, including reasoning,
instruction-following, and in-context learning (ICL).

Reasoning is a core ability of LLMs, enabling them to perform
complex multi-step reasoning through specific prompt design
methods. This fundamental problem-solving ability supports various
practical applications, such as medical diagnosis, legal decisions, and
virtual assistants. Instruction-following refers to the LLM completing

Frontiers of Computer Science | Issuc 3 | Volume 20 | March 2026 | 2003601-2



Front. Comput. Sci., 2026, 20(3): 2003601

a new task according to task instructions without using an example.
The generalization ability of LLMs allows them to generate,
summarize, extract, classify, and rewrite text based on designed
instructions.

In-context learning (ICL) is a paradigm that allows LLMs to
perform tasks by learning from a few examples provided within the
context [46]. This approach diverges from conventional supervised
learning, which requires extensive training datasets and model
parameter updates. The essence of ICL lies in its ability to leverage
analogy and pattern recognition. When faced with a new query,
LLMs refer to demonstration examples in the context to identify and
apply relevant patterns without altering their underlying parameters.
This process is akin to how humans learn from a few instances and
generalize knowledge to new situations. The model’s predictions are
made by concatenating the query with contextual examples and using
a scoring function to determine the most likely outcome. Prompt
engineering primarily leverages ICL capabilities to steer the output of
LLMs by carefully designing the content and structure of the input
context.

2.2 Classification
To systematically categorize and generalize various prompt
engineering techniques, we propose a novel taxonomy based on the
functional divisions within agent systems. This approach aims to
ensure both comprehensiveness and orthogonality in our taxonomy.
Current research in agent systems divides agent functions into four
main categories: profile function, memory function, planning
function, and action function [47—49]. This comprehensive division
ensures that any workflow based on LLMs can be covered by these
four aspects.

Building on this functional division, we align prompt engineering
workflows with these categories. We classify prompt engineering
into four aspects:

e Profile and instruction. This foundational aspect defines the
basic attributes and scenarios for LLMs. It standardizes LLM
responses based on the information provided through natural
language prompts. Profile and instruction examines prompt
design from the perspective of textual content, proposing a
foundational framework for basic prompt construction.
Advanced prompt engineering techniques are developed
based on this foundational framework.

o Knowledge. This aspect involves incorporating information
from a local database into the prompt to mitigate the
“hallucination” problem and improve the professionalism of
the LLM. Although Knowledge techniques generally enhance
LLMs in most cases, it is still necessary to assess whether
knowledge augmentation is required based on the specific
task.

® Reasoning and planning. This approach enhances the
reasoning ability of LLMs. It includes decomposing goals,
such as Chain of Thought [30], and utilizing tools and
feedback to facilitate reasoning. This is crucial for improving
LLM performance when handling complex tasks.

e Reliability. This aspect refers to the process of reducing bias

in LLM responses. It involves ensuring both the stability of
content generated multiple times (content bias) and the
generation of content that is free of bias, stereotypes, or
cultural impairment (value bias). Reliability is a crucial step
in prompt design, and it can be combined with other prompt
engineering techniques to enhance the performance of LLMs
in real-world tasks.

Synergy. Our taxonomy provides a universal method for prompt
design. Within this framework, profile and instruction represent the
initial step in prompt design, establishing a foundational prompt
suitable for daily use. Reliability serves as the final step, ensuring the
stability and safety of the model’s responses, which is essential for
the practical application of prompt engineering. Both knowledge and
reasoning and planning are techniques that enhance foundational
prompts, improving the performance of LLMs through knowledge
augment, target decomposition, and self-feedback. The application of
these enhancement techniques depends on the specific use case. To
date, our four categories encompass the vast majority of prompt
engineering techniques. It is anticipated that future advancements in
prompt engineering will focus on enhancing prompts. Due to the
generality of our taxonomy, it can be expanded accordingly.

2.3 Application

In Subsection 2.2, we introduce a comprehensive taxonomy for
prompt engineering, categorizing the process of prompt construction
in practical applications into four distinct components. Prompt
engineering facilitates the practical deployment of LLMs across
various applications. In Section 4, we aim to provide a thorough
classification of the application areas of LLMs. To align with our
proposed taxonomy, we categorize the application fields of LLMs
into two main areas: Cognitive Applications of LLMs and
Transformative Applications of LLMs.

1) Cognitive applications of LLMs

Cognitive applications of LLMs refer to instances where users
leverage LLMs to acquire or process information. The extensive
number of parameters in LLMs endows them with vast knowledge
and robust capabilities for knowledge processing. Based on the types
of results generated by LLMs, cognitive applications can be
classified into two categories.

e Information acquisition. This process involves extracting
from LLMs
dialogues. The LLM outputs knowledge that meets task

pertinent  knowledge through structured
requirements. Common applications include chatbots and
professional knowledge Q&A systems, where LLMs assist
users in obtaining necessary information. In computer science,
LLMs enhance system performance in search engines and
training data augmentation.

e In-depth information analysis. This application leverages
LLMs to analyze and reason over user input data, generating
conclusions derived from the underlying information. In fields
such as financial markets and chemical analysis, LLMs
perform comprehensive analyses of complex data from
multiple dimensions, valuable and

deriving insights

summaries.
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2) Transformative applications of LLMs

Transformative Applications of LLMs refer to scenarios where
LLMs autonomously execute task processes, reducing the need for
human intervention. Based on the types of tasks executed by the
LLM and the structure of prompt organization, transformative tasks
can be categorized into two categories.

e Physical world employing prompt
engineering techniques, such as Task Information (Subsection
3.1) and RAG (Subsection 3.2), LLMs can autonomously

execute tasks in fields such as software engineering [50,51]

applications. By

and robotics [52]. With advancements in prompt engineering
methodologies, LLMs have the potential to undertake
specialized professional roles, such as Al-driven doctors [53]
and Al legal advisors [54,55].

e Creative applications. By leveraging prompt engineering
techniques, LLMs can generate literature and music [56-58],
effectively replacing humans in the creative workflow. With
the advent of increasingly multimodal LLMs, the application
of these models in video creation has emerged as a significant
area of development [59].

B 3 Taxonomy

This section provides an overview of current prompt engineering
techniques in the context of generative model prompting. As
illustrated in Fig. 1, we refine these techniques based on the
distinctive features of different stages of the processing task.

3.1 Profile and instruction

Insight: Profile and Instruction summarizes prompt engineering techniques
based on textual content. It defines the LLM's fundamental attributes and task
specifications by designing prompts that incorporate personality information,
task descriptions, and few-shot examples. As the first step in constructing

prompts, it establishes a framework for more advanced prompt engineering
approaches.

Profile and instruction (3.1)

Personality information (3.1.1)
Task inforamtion (3.1.2)

Demonstration information (3.1.3)

Knowledge (3.2)

Basic RAG techniques (3.2.1)
Advanced RAG techniques (3.2.2)

Reasoning and planning (3.3)

Taxonomy of methodologies
A

Target decomposition reasoning (3.3.1)

Tools and feedback enhanced reasoning (3.3.2)

Reliability (3.4)

Content Bias (Section3.4.1)

Value Bias (Section3.4.2)

A comprehensive taxonomy of prompt engineering techniques for large language models

The primary purpose of this line of work is to determine a reasonable
knowledge location for the LLM [60], concretely embodied in
personality 3.1), task
(Subsection 3.1), and demonstration information (Subsection 3.1), as

information  (Seubsction information

shown in Fig. 2.

1) Personality information

LLMs can perform tasks by adopting specific roles, such as lawyers,
teachers, and domain experts [18,19]. Personality information is a
crucial part of the profile, defining the attributes of the LLM’s role.
These features are often included at the start of prompts to shape the
LLM’s response. Typically, personality information covers key
characteristics like age, gender, and profession [20], along with tone
and psychological traits, thereby reflecting the personality of the
LLM’s role. Assigning a specific role to an LLM establishes a
suitable starting point for its responses. For instance, texts containing
information about law are more likely to appear in the context of the
word “lawyer”. As a result, law-related information receives more
attention along with the word “lawyer” during the inference stage,
leading to responses pertinent to legal matters.

2) Task information

Task information plays a pivotal role in prompt design. Providing
clear and well-defined task instructions enables LLMs to produce
more specialized and contextually relevant outputs.

Task instruction. Task instruction is a prompt technique used to
standardize the output of LLMs by incorporating clear task objectives
and requirements into the prompt. This approach can be summarized
into three key aspects: intent, domain, and demand. As shown in
Fig. 3, intent defines the task’s goal, demand specifies the detailed
requirements, and domain identifies the information source relevant
to the task. Research [61] has shown that when fundamental
instructions lack clarity, LLM responses tend to be overly general. If

Cognitive applications of LLMs (4.1)

(4.1.1) Information acquisition

Chatbots

Search engine

Professional knowledge Q&A
Training data augmentation

3.1.1 3.2.1 322 34.1

(4.1.2) In-depth information analysis

3.13 332
322 33.1 332

Financial markets
Chemical molecules

Y
Application

Transformative applications of LLMs
(42)

(4.2.1) Physical world applications

3.1.2 33.1 332

3.4.1 342 Software engineering

Robots

Expert-level task automation
(4.2.2) Creative applications

Language

Vision

Hearing

Fig. 1 The taxonomy tree of prompt engineering methodologies. The application tree on the right reveals the relationship between the practical

application of LLMs and our categorized prompt engineering techniques (the numbers in parentheses stand for the corresponding subsections)

Frontiers of Computer Science | Issuc 3 | Volume 20 | March 2026 | 2003601-4



Front. Comput. Sci., 2026, 20(3): 2003601

@asic prompt N

[Proﬁle and instruction \\\

EIDemonstration Eril Zero-shot ‘i

i‘ information | 1:‘ Prompting |

b j’ Few-shot ‘5

= @< { Prompting |

Fig.2 Profile and

components: personality information, task information, and demonstration

instruction categorizes basic prompts into three

information. This framework provides a foundational structure for prompt

design in general-purpose applications

-
P

o)
-l. Task instruction prompt

You are a helpful assistant......
Please | provide a travel plan | | using public transport | based on map.
- a v

7 s

7
- / !
Key aspects . £ i
o K v
[ Demand ] [ Domain ]
Illustrates the most Supplemen.ts‘ some Indicates
important f)f the SuPSldmy the expected
requirements of the mfcrmat}on ,Of e source of the
task and provides task, Whlc,h b task-related
initial clarity on the ‘“°fe‘de_““led knowledge.
it Ot k. description of the
goal.

Fig.3 An example prompt of the task instruction paradigm. The prompt
consists of intent, demand, and domain, providing the basic information

elements of the task

the prompt’s structure is ambiguous and the content is too broad, the
LLM faces numerous options, making it difficult to focus on the
critical parts of the prompt. Consequently, this can lead to extensive
but unfocused results. Studies such as [21] suggest that instruction
understanding is a promising alternative paradigm for few-shot
learning. Compared to examples, instructions provide stronger
expressiveness and more stringent constraint capabilities [21].

Task environment. Environment Information incorporates task
environment details into the prompt depending on the type of task.
Providing information regarding the virtual task environment of the
LLM can facilitate response generation, ensuring alignment with task
requirements. For instance, if the LLM is tasked with “Fetch a bottle
from the kitchen”, the LLM+P model
information about the task environment and the cost of the action,
such as the distance from the current location to the kitchen and the
location of the objects that the task needs to interact with in the

[43] can incorporate

prompt. This facilitates the generation of a more feasible plan,
represented using a PDDL (Planning Domain Definition Language)
framework [43]. However, environmental information alone is not

sufficient. The LLM should also learn the anticipated consequences
of its actions and verify if the current environment meets the
conditions specified in the prompt. DEPS [62] addresses this by
describing the objects accessible to the LLM and defining an action
format that outlines both the conditions and potential outcomes of
those actions. This approach enables the LLM to understand the
relationships between elements in the task environment, comprehend
the environmental information, and generate responses consistent
with the task requirements. These methods have shown significant
improvements over traditional deep learning techniques in open-
world scenarios, such as Minecraft [63].

3) Demonstration information
Demonstration information is a technique that involves adding
specific input-output mappings to the prompt. Research [64]
indicates that LLMs trained on sufficiently large and diverse datasets
provide responses to zero-shot prompts that are comparable to those
generated after supervised learning. Based on the number of labeled
demonstrations, it can be categorized into zero-shot prompting with
no examples and few-shot prompting with few examples.

Zero-shot prompting. Zero-shot prompting does not involve adding
a labeled example to the prompt. It is composed of task and profile
This approach leverages
knowledge of LLMs to generate responses based on the instructions

information [65]. the pre-existing
of the task. Previous research [60] has shown that zero-shot
prompting enables the model to access its existing knowledge by
identifying already learned tasks. Furthermore, Reynolds et al. [60]
suggested that there is significant potential for developing automated
methods to generate task-appropriate zero-shot prompts.

few-shot
prompting equips LLMs with a limited set of input-output examples,

Few-shot prompting. Unlike zero-shot prompting,

as illustrated in Fig. 4(a). This approach aids the model in
comprehending both the task intent and the required output format.
Providing several high-quality examples can improve the model’s
performance on complex tasks and standardize the form of outputs
[66]. Carefully designed demonstrations within the prompt can
achieve results comparable to fine-tuning, with the performance gap
narrowing as the number of model parameters increases [13]. Several
approaches are proposed for selecting and augmenting these
demonstrations. For example, Liu et al. [67] and Su et al. [68]
enhanced performance by choosing examples similar to the query
input. Specifically, Liu et al. [67] employed a K-nearest neighbor

: Is this a prime number? Answer ‘Yes’ or ‘No’. {15 this a prime number? Answer Yes’ or ‘No:
Input: 45317 Input: 13333
Output: Yes Output: No
Few-shot demonstrations Biased Few-shot demonstrations
Input: 8415 Input: 53333
Output: N Output: N
put o Prompt WS e Prompt
Input: 93 Input: 943
Output: Output:
g % g ®
Correct answer Answer MisdirectedAnswer Answer
(a) (b)

Fig. 4 The biased demonstrations direct the LLM to the wrong location of
the knowledge. This causes LLM to over-reference incomplete examples.

(a) Few-shot prompting; (b) misdirected few-shot
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(KNN) approach, while Su et al. [68] introduced Vote-K to
incorporate diverse and representative examples by artificially
labeling useful, previously unlabeled examples. Additionally, Jiang
et al. [69] optimized the structure of examples, moving beyond the
conventional “Q&A” format to identify the most suitable prompt
template for each query through large corpus analysis.

However, few-shot prompting has some limitations, as shown in
Fig. 4(b).
incorporate the demonstrations, which presents a limitation for

Few-shot prompting requires additional tokens to
processing long text inputs. Recent research [43,70,71] demonstrates
that the selection and variation of samples can significantly impact
model performance. In response to these findings, Fei et al. [72]
introduced a systematic method for measuring label biases,
identifying three distinct types of label biases in in-context learning
(ICL) for text classification. To address these biases, several
approaches [71,73] are proposed to calibrate the model’s output
probabilities. These methods typically utilize output probabilities
generated from a set of inputs either sourced from the task domain
[73,74] or from standard task inputs [75]. By adjusting the samples in
few-shot learning, these techniques aim to produce unbiased outputs.

3.2 Knowledge

Insight: Knowledge outlines prompt engineering techniques based on

Retrieval-Augmented Generation (RAG).RAG functions by retrieving

relevant informationfrom a knowledge database based on an initial prompt
and integrating it with the original prompt. This approach enhances the
timeliness and professionalism of LLMs, effectively mitigating hallucination
issues and improving the model's performance in specialized tasks.

Knowledge techniques involve augmenting prompts with external
documents or knowledge databases. This process integrates content
from local knowledge databases into the original prompt, enhancing
alignment with specific information and addressing challenges such
as hallucination and timeliness in LLM training [76—78]. As the scale
of parameters of LLMs grows, the computing resources required for
fine-tuning also increase. Retrieval-Augmented Generation (RAG) is
a key technology for supplementing LLMs with real-world
information, enabling them to fully utilize their reasoning
capabilities. Although RAG techniques encompass both retrieval and
knowledge graph methodologies [76,79], this paper primarily focuses
on summarizing RAG techniques that are directly related to prompt
design, while excluding those unrelated to prompt engineering.
According to the complexity of the RAG framework, we classify it
into basic RAG techniques and advanced RAG techniques.

1) Basic RAG techniques

Basic  Retrieval-Augmented (RAG) techniques
dynamically retrieve information from external knowledge sources,
organize the final prompt based on the original query, and use the

Generation

retrieved data as a reference. The RAG workflow typically consists
of three main steps [26], as illustrated in Fig. 5:

e Indexing. Documents are divided into smaller chunks,
encoded into vector representations, and stored in a database,
such as an inverted index or a vector database.

e Retrieval. The top k chunks most relevant to the query are

A comprehensive taxonomy of prompt engineering techniques for large language models

"(l) Indexing

a0
SES
Documents
(2) Retrival

Query ‘ ==K Context I» —r—iv]
LLM

e

Fig.5 A representative instance of the RAG process applied to question

Vector database

Prompt

(3) Generation

answering

retrieved based on semantic similarity.

e Generation. The original query and the retrieved chunks are
fed into a large language model (LLM) to generate the final
response.

A simple RAG prompt might look like: “Please answer the above
question based on: Segment 1: Segment 2:”. The segment chunks are
then populated with retrieved results from the external knowledge
source. Basic RAG techniques provide a foundational approach to
This
implemented using functions and other relevant tools. There are

augmenting LLMs with external knowledge. can be
several potential areas for optimization within basic RAG techniques
[80]. From a prompt engineering perspective, three key challenges
are: 1) retrieving the most relevant document, 2) effectively
combining the retrieved content to achieve optimal results, and

3) iteratively refining the entire process [80].

2) Advanced RAG techniques

In this part, we begin with an overview of the representative RAG
framework and then explore optimisation methods from three distinct
perspectives: pre-retrieval optimization, post-retrieval optimization,
and memory management. As illustrated in Fig. 6, advanced RAG
enhances the alignment between retrieved knowledge and the
prompt, enabling the construction of more coherent and effective
prompts. The advanced RAG prompt engineering enhances the
workflow of basic RAG by incorporating several key optimizations:
In the pre-retrieval stage, it addresses semantic discrepancies
between the query and document chunks by rewriting and
decomposing the query. In the post-retrieval stage, it refines results
by modifying the content and structure of the “query+document”.
Additionally, advanced RAG
conversation history to generate memory for LLMs, improving the

leverages retrieval history and
accuracy of responses in long conversations.

e Pre-retrieval optimization. The pre-retrieval optimization focuses
on augmenting the original query in order to retrieve documents that
are more relevant to the task. MultiHop-RAG [23] developed a
dataset designed to strengthen RAG’s capabilities. This dataset
includes a knowledge base and multi-hop queries. The queries are
categorized into inference, comparison, temporal, and null queries,
types Query
standardization is performed based on their unique characteristics,

each tailored to specific of reasoning tasks.

ensuring consistency and effectiveness across all four query types.
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Fig. 6 A workflow of advanced retrieval-augmented generation (RAG) techniques. 1) Pre-retrieval optimisation phase. Before embedding the

query, techniques such as query rewriting are employed to improve both the structure and content of the original query, facilitating the retrieval

of more contextually relevant information. 2) Post-retrieval optimisation phase. Before inputting the retrieved documents into the LLM, the

documents are refined through content filtering and structural adjustments to better align with the original query. 3) Memory module. This

component preserves essential information and retrieval results in long-context dialogues, which enables more relevant retrieval when handling

queries related to previous dialogue history

Query rewriting is another technique employed in pre-retrieval
and ITER-RETGEN [81] both
illustrate the effectiveness of query rewriting. These approaches

optimization. Query2doc [24]

leverage the capabilities of LLMs to generate pseudo-documents,
which are then combined with the original query to form a revised
version. This process effectively integrates corpus semantics into the
user query. Query2doc has demonstrated significant improvements in
BM25 [82] performance, achieving a 3% relative gain on
MSMARCO [83] and a 15% relative gain on TREC DL [84], without
requiring model fine-tuning. Similarly, ITER-RETGEN has shown
enhanced performance across various question-answering tasks,
including Natural Questions, TriviaQA [85], 2WikiMultiHopQA
[86], and HotpotQA [87], surpassing previous baseline results.

® Post-retrieval optimization. The post-retrieval optimization
focuses on the combination of retrieved documents and the user’s
original input. This approach refines the retrieved documents by
adjusting their content, structure, and attention mechanisms as
required.

(1) Content adjusting. RALM with CoN [88] reconstructs document
content to enhance alignment with the original query. This method
strategically emphasizes critical sections and modifies the retrieved
document accordingly. Prior to inputting into the LLM, potential
responses are generated from the retrieved content and subsequently
evaluated to identify the most relevant context. ARM-RAG [89]
takes a different approach, utilizing neural information retrieval to
trace reasoning chains, particularly in solving mathematical
problems. During their experiments, they found that accuracy could

be improved by replacing words that might cause significant shifts in

the model’s reasoning. This technique involves blurring words that
could disrupt the reasoning process, thus improving the model’s
overall accuracy.

(i) Structure adjusting. Adjusting the structure of retrieved
documents can enhance the effectiveness of the model’s responses
[90]. Articles can be classified into four categories based on their
relevance to the query: Gold Documents, Relevant Documents,
Related Documents, and Irrelevant Documents, in decreasing order
of relevance [90]. Their study demonstrated that incorporating
Irrelevant Documents into the document reconstruction process
improves performance accuracy by more than 30%.

(iii) Attention mechanism. System2Attention (S2A) [91] enhances
the soft attention mechanism in LLMs within the Transformer [92]
architecture by refining and refocusing the attention process. Their
approach leverages the LLM itself to build stronger attention
mechanisms. Specifically, it uses prompts to adjust the LLM,
enabling it to reconstruct the retrieved document into a new one by
removing irrelevant text. Additionally, S2A introduces further
techniques to refine attention. It generates the final response based on
the reconstructed document, essentially refocusing attention one
more time. S2A demonstrates promising performance, particularly on
the TriviQA [85] dataset, where it outperforms LLaMA 2-70B-chat
[93] in factuality with scores of 80.3% compared with 62.8%. On
GSM-IC [94], S2A improves accuracy from 51.7% to 61.3%.

e Memory. In addition to constructing an effective external
knowledge base, RAG can also store retrieved results and
conversational histories to build memories. These memories are
classified into two types: external and internal memories.
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(1) External memories. The Selfmem framework [25] employs
RAG in an iterative manner to create both a memory pool and a
memory selector. This selector identifies an output to serve as
memory for subsequent generation rounds. The core idea of this
framework is based on prompt engineering. In this approach, the
prompts presented to the LLM are crafted to be more similar to the
model’s outputs stored in the memory pool rather than the original
training data. The memory pool undergoes multiple rounds of search
optimization and retention to ensure that the most representative
results are identified and preserved.

(ii) Internal memories. Internal Memories leverage the reasoning
capabilities of LLMs to evaluate and provide feedback on the
retrieved information, forming the internal memory of the LLM [26].
To implement this, the MetaRAG [95] framework is introduced,
which incorporates three core processes: monitoring, evaluation, and
planning during inference. MetaRAG has demonstrated significant
performance improvements, achieving a 34.6% accuracy increase on
the 2WikiMultihopQA dataset and a 26% accuracy improvement on
the HotpotQA dataset.

3.3 Reasoning and planning

Insight: Reasoning and planning summarizes prompt engineering techniques
aimed at enhancing the reasoning capabilities of LLMs, such as Chain-of-
Thought (CoT) prompting. By decomposing tasks, leveraging external tools
for reasoning, and incorporating feedback, it improves the model's ability to
solve complex problems, as shown in Fig. 7. It represents a crucial step in
prompt engineering and is a core component in the design of effective prompts.

1) Target decomposition reasoning

Target decomposition is the key prompt technology that enhances the
reasoning ability of LLMs. It mirrors the core of human reasoning,
where individuals, through experience, learn to tackle complex goals
by breaking them down into more manageable sub-goals [96]. This
section introduces the essential prompt strategies: plan-execute
decomposition and iterative decomposition, as shown in Fig. 7.

The approach
decomposing a complex query Q into a series of simpler

e Plan-execute decomposition. involves

A comprehensive taxonomy of prompt engineering techniques for large language models

subproblems that can be addressed sequentially. This method
emphasizes the relationship between problem-solving steps, enabling
the inheritance and promotion of previous solutions. The Least-To-
Most Prompting method [97] consists of two main phases:
Decomposition and Sub-problem Solving. In the Decomposition
phase, the prompt includes examples and specific instructions to
illustrate the breakdown process. Subsequently, in the Sub-problem
Solving phase, attention shifts to demonstrating how each sub-
problem is resolved using the provided examples, which are recorded
in a list. This list stores previously answered sub-questions along
with their corresponding answers, and it helps identify the next
question to address in the sequence.

e [terative decomposition. Chain of Thought (CoT) is the core
technique of iterative decomposition. CoT decomposes task goals
during the reasoning process. It iteratively decomposes the problem
to identify and address sub-goals. This process is then repeated until
the target is fully completed. Finally, the reasoning results are
generated. The origin of the CoT within LLMs can be linked to the
pioneering ideas proposed by Jason et al. [30]. Their ideas revolve
around generating thought chains to enhance LLMs’ ability to
perform complex reasoning tasks. When LLMs are provided with
limited samples during inference, the prompt follows a structured
triplet format: <input, chain of thought, output>. This structured
framework equips LLMs with the capacity to produce similar chains
of reasoning, offering valuable insights into their computational
capabilities and reasoning processes.

(i) User-level CoT prompt. The work by Wei et al. [30] is regarded
as the pioneering study on CoT prompting. By providing the LLM
with a sequence of intermediate reasoning steps within the prompt,
the model can emulate the human problem-solving process,
ultimately arriving at an accurate solution. This process can be
further simplified through the use of zero-shot and few-shot
prompting techniques, as outlined in Subsection 3.1. Additionally,
Kojima et al. [64] demonstrated that the inclusion of the phrase
“Let’s think step by step” in the prompt enhances the LLM’s ability

Q: Roger has 5 tennis

balls. He buys 2 more

cans of tennis balls.

Each can has 3 tennis
balls. How many tennis
balls does he have now?

q’lan-execute decomposition )
Sub-queries
The final :
¢ answer is 11.
4
R\
Roger has 5 balls already.
i He buys 2 x 3 = 6 more. -~
i Hence he has 5 + 6 = 11 balls now. =
....................... I..--."--."--."----’ V . )
External ficat
| Internal feedback e
J

Fig. 7 An example of utilizing reasoning techniques to solve problems. Task decomposition methods complement LLMs by structuring the

reasoning process, thereby enhancing their ability to tackle complex problems. The integration of tool utilization within prompts enables LLMs to

concentrate on reasoning tasks, while feedback mechanisms further strengthen their reasoning capabilities
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to perform CoT decomposition. Leveraging few-shot examples,
LLMs can autonomously decompose and solve complex problems,
leading to reductions in both energy consumption and processing
time. The scope of the CoT is extensive, encompassing a wide range
of problems encountered in daily human life, including mathematical
calculations, common-sense reasoning, and more. Notably, CoT,
based on few-shot examples, demands less effort and time compared
to directly training an LLM.

(ii) Technique enhanced CoT. Following the introduction of CoT,
researchers have focused on improving its efficiency and
adaptability.

Auto-CoT automates problem sampling and inference chain
generation using Question Clustering and Demonstration Sampling
[98]. In clustering, Sentence-BERT [99] encodes queries as vectors,
grouped via K-Means to form clusters of related problems. Each
cluster’s central problem is selected for Zero-Shot-CoT [64],
Active Prompt [100]

addresses the challenge of adapting CoT manual annotation examples

generating structured inference chains.
to diverse tasks. It enables LLMs to adjust to task-specific
requirements through example prompts annotated with manually
designed CoT inferences. To improve CoT interpretability, Faithful
CoT [101] integrates Natural Language (NL) and Symbolic Logic
(SL) programs for structured reasoning. The NL program
decomposes queries into subproblems, while the SL program (e.g.,
Python and Datalog) solves them iteratively, enhancing accuracy and
explainability.

Researchers have extended Chain-of-Thought reasoning by
developing more flexible frameworks, among which XoT [102]
represents a significant advancement. This approach enables adaptive
switching between reasoning modes when encountering obstacles,
guided by two distinct validation methods. Passive validation ensures
fundamental correctness through basic error detection, while active
validation assesses whether generated responses align with the
original query. XoT also introduces diverse structural formats to
enhance reasoning capabilities. Tree-of-Thought [102] structures
reasoning hierarchically,
Graph-of-Thought
interconnected network,

enabling
[32]
allowing for greater

step-by-step decomposition,
models reasoning as an
flexibility and

whereas

adaptability in complex problem-solving.

2) Tools and feedback enhanced reasoning

Advanced reasoning techniques utilize systematic methodologies to
optimize prompt design. These techniques include delegating specific
computational tasks to external tools and simulating human feedback
learning processes. The following discussion is organized into two
sections: external support and feedback.

e External support. LLMs are expected to perform both semantic
understanding tasks (e.g., task intent understanding) and complex
reasoning tasks (e.g., numerical computation) when used for
reasoning. However, current LLMs often face challenges in
executing both tasks simultaneously. For instance, in complex code
generation tasks, the generated code frequently contains errors or
bugs. External support reduces the workload of LLMs by utilizing
tools, allowing them to focus on reasoning and planning. According

to the external support they utilize, external support is categorized
into experimental simulators, code interpreters, and integration tools.

(1) Experimental simulator. Current LLMs face challenges when
dealing with real-world problems that require a deep understanding
of physical principles [103]. Due to the limitations of LLMs, LLMs’
responses are often based on the semantic interpretation of the text
rather than the rules of physics, making it difficult for them to reason
logically through existing knowledge [104,105]. As a result, relying
solely on LLMs for solving physical problems is problematic. To
address this limitation, it is crucial to conduct simulation experiments
on physical problems and incorporate the results into LLM-generated
responses.

Mind’s Eye [103] leverages a computational physics engine [106]
to simulate real-world physical processes. A Text-to-Code language
model is employed to generate rendering code for the physics engine,
allowing the simulation of physical experiments relevant to the posed
question. The simulation outcomes are then incorporated into the
LLM prompt in natural language, compensating for the model’s lack
of physical understanding. Mind’s Eye demonstrates a significant
improvement in inference accuracy.

(i1) Code interpreter. When confronted with complex reasoning
problems, offloading the precise computation task to external
modules can significantly improve the model’s solution accuracy.
Researchers [107,108] prompt Codex [50] to generate executable,
code-based solutions. These solutions address a variety of tasks, from
university-level exercises to mathematical word problems and
financial question-answering (QA). This idea of cooperation between
LLMs and code has also been applied to solve more specific
problems [109,110]. One possible interpretation of these findings is
that code-based approaches benefit from well-defined structural
consistency, offering advantages in robustness and logical reasoning
compared to natural language. This form of code-driven reasoning
allows LLMs to focus more on problem-solving logic rather than the
intricacies of textual representation.

The PAL [111] method employs a CoT prompting strategy to
decompose complex symbolic reasoning, mathematical problem-
solving, and algorithmic tasks into intermediate steps, represented
through Python code and natural language annotations. In this setup,
computational tasks are delegated to the Python interpreter.
Similarly, Chen et al. [112] introduced “Program of Thoughts” (PoT)
prompting, which separates computational and reasoning processes
through specific prompt designs. Unlike PAL, PoT follows a zero-
shot approach for prompt generation. Luo et al. [113] proposed a
framework named MultiPoT to select the optimal external
programming language based on task types to overcome the Python
language’s extension limitations. MultiPoT creates custom hints for
each programming language to ensure semantic consistency and
structural diversity. When addressing issues, it integrates multiple
programming languages and selects the final answer generated from
each PL by self-consistency. The results obtained incorporate the
benefits and diversity of multiple programming languages.

(iii) Integration tools. In addition to code interpreters and
simulators, more tools have been collected in the form of APIs.
Integration tools are the frameworks that incorporate diverse tools
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into prompts. The strong generalization ability of LLM allows it to
effectively utilize natural language as an intermediary to manipulate
external tools [114]. Additionally, prompt engineering techniques
serve as the guides for these tools, providing instructions and
guidance on how to effectively utilize them. Based on this insight,
Parisi et al. [115] built a text-to-text api prompt enhancement
framework called TALM. The TALM bootstrap LLM generates
“|tool-call” and “tool input text” to construct API call requests, and
then appends the results returned by external APIs to the text
sequence, significantly expanding the model’s capabilities. Similar to
this, Toolformer [116] uses the same approach of including API
requests in the prompts to leave the sub-operations to external tools,
while Toolformer also suggests ways to build datasets and fine-tune
them. Galactica [117] adopts a special token to initiate a request to
call an external tool. This work delivers the concept of “work
memory”, which generates a special segment in which algorithms
and problem-solving code are generated when the model needs to
call an external tool. These methods require a strategy to determine
what tasks should be offloaded.

To overcome the limitations of manually writing API requests,
some works provide strategies to make LLM use tools automatically.
MRKL [118] provides a modular neural-symbolic architecture that
divides tasks into corresponding task APIs through a router and
integrates the returned results. ART [119] organizes its task library,
retrieves tasks related to the original prompt in the task library, then
decomposes a series of tasks in turn into corresponding sub-tool
sequences, generates a specific cue word to be processed, and finally
integrates the results of the tool API into the original cue word to
realize the automated tool usage of LLM. More large-scale
architectures such as Chameleon [120], Gorilla [121], HuggingGPT
[122], and ToolAlpaca [123] take advantage of richer API tools and
more systematic API requests, greatly enhancing the ability of LLM
to use tools to handle tasks. Based on these architectures, several
“LLM + Tool” agents such as TPTU [124], TPTUv2 [125], and
TaskMatrix. Al [126] have also demonstrated a strong ability to
handle complex tasks in different scenarios.

o Feedback. Similar to human learning processes, feedback
enables individuals to identify areas for improvement and resolve
issues more effectively. The provision of feedback enables the LLM
to ascertain the correct and incorrect responses through prompting,
thereby enhancing its capacity for reasoning. In accordance with the
subject of the judgment, feedback can be classified into two distinct
categories: internal feedback and external feedback.

(i) Internal feedback. LLMs possess the inherent capability to
engage in self-feedback. Numerous scholars in this field have
demonstrated the self-feedback ability of LLMs and have proposed
corresponding methods to enhance and leverage this mechanism
effectively. By harnessing self-feedback, LLMs can iteratively refine
their outputs, contributing to their continual improvement and better
performance.

Internal feedback techniques. Some scholars [127] demonstrated
that LLMs can undergo iterative self-refinement without requiring
additional training, introducing the SELF-REFINE approach. This

A comprehensive taxonomy of prompt engineering techniques for large language models

method refines the output of LLMs through alternating iterations of
feedback and refinement to enhance the output quality. The feedback
generation process is guided by a few-shot prompt [13]. SELF-
REFINE outperforms models such as GPT-3.5 and GPT-4, directly
yielding absolute improvements ranging from 5% to 40%. In tasks
involving code generation, when applied to CODEX, SELF-REFINE
improves initial generation by up to 13%.

SELF (Self-Evolution with Language Feedback) [128] enables
LLMs to engage in self-feedback and self-refinement. This is
achieved by providing LLMs with feedback in natural language,
empowering them to autonomously evolve. The evolution process
involves generating responses to unlabeled instructions and
iteratively refining these responses through interactions. SELF
teaches LLMs fundamental meta-skills using a limited set of
examples in natural language, fostering a continuous cycle of self-
evolution for LLMs. Self-Contrast [129] enhances the self-feedback
capacity of LLMs. This approach prompts LLMs to generate various
perspectives to address the same problem, subsequently facilitating
comparison and reflection on the disparities among these
perspectives.

Some scholars [130] proposed that LLMs can autonomously
provide self-feedback regarding hyperparameter perception. Through
hyperparameter-aware instruction tuning, LLMs ascertain the optimal
decoding strategy and configuration based on input samples, thereby
achieving self-regulation. Their proposed HAG (Hyperparameter
Aware Generation) consists of two components. Firstly, by inputting
a query Q to the LLM, HAG generates appropriate hyperparameters.
Subsequently, HAG instructs the LLM to adjust the model’s
decoding strategies and hyperparameters according to the generated
parameters, culminating in the generation of the final result post-
adjustment.

Evaluation of internal feedback. For the evaluation of internal
feedback, some scholars [131] proposed that glass-box features
should be taken into account in self-assessment of LLMs. They
proposed that the softmax distribution serves as a dependable
indicator for quality evaluation. Self-feedback can enhance
performance on certain tasks for LLMs, while potentially worsening
performance on others [132]. In light of this, some scholars [133]
introduced the concept of Self-Bias to evaluate the bias of LLM
output accuracy across different tasks. Additionally, their research
reveals that models with larger parameters and access to external
feedback possess the ability to more accurately assess and mitigate
Self-Bias.

(i) External feedback. Certain external tools can verify the
extrapolation outputs of LLMs. CRITIC framework [134] enables
appropriate tools to assess the output of LLMs, which in turn allows
LLMs to adjust and refine their output based on this feedback. These
external evaluation tools encompass search engines, code
interpreters, text APIs, and more. The feedback process primarily
involves validating the initial output expectations generated by the
LLMs and then modifying the output based on critiques from the
verification process. Through this iterative process, external tools
offer feedback to LLMs from an external perspective, thereby

enhancing the performance of LLMs.
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3.4 Reliability

Insight: Reliability, as the final step in the prompt design process, focuses
on ensuring more consistent responses from LLMs while reducing biased

outputs. It provides a foundation for the practical deployment of LLMs in

realworld applications.

In the first three parts, we introduce how to design an effective
prompt for LLMs using the Profile-Knowledge-Reasoning process.
Due to the uncertainty of the LLM’s response [135], the same prompt
can lead to diversified responses from the LLM. At the same time,
due to the LLM’s context learning ability, it is particularly sensitive
to the order, type, and historical bias of the prompts [135-137]. The
bias of the prompt may worsen the performance of the LLM in
downstream tasks. Furthermore, the reasoning strategy used by the
LLM is opaque, which means that the responses of the LLM are not
always trustworthy [138], and there are a series of risks associated
with the responses of the LLM [139,140]. In practical applications,
users often demand stable and reliable responses from the LLM. The
process of reducing the bias of the LLM’s response through prompt
integration or by generating auxiliary knowledge from the LLM is
known as improving the reliability of the LLM. In this part, we will
explain from both perspectives of content bias and value bias.

1) Content bias

We define content bias as the deviation between the completion
results of the LLM and the task requirements. For most LLM tasks,
designing prompts according to the profile-knowledge-reasoning
process can help the LLM perform well in response to task
requirements. However, when the task is more complex, it is difficult
to obtain stable and perfect output through a single round of prompt
input [137,139]. An intuitive idea is to adjust the order of the
prompts or change the method of prompting to generate multiple
rounds for the same question, which actually uses the concept of
ensemble. The prompt method based on this idea is called prompt
ensembling.

Prompt ensembling refers to the use of multiple different prompts
to complete the same task, enhancing the reliability of the results
through multiple responses. Prompt ensembling borrows from the
pattern of ensemble learning and includes two sub-processes: first
generating multiple prompts as input, and then combining the
responses of multiple prompts through a specific strategy to obtain
the final result [141,142]. Bagging and boosting are two typical
ensemble methods widely used in many classic tasks and have
unique applications in LLM.

e Bagging prompt. The application of Bagging Prompt in LLM
mainly falls into two categories: the majority vote method based on
Self-Consistency [143] and the beam search method based on Step-
Verifier [144]. BPE [145] focuses on constructing few-shot CoT
prompts based on Self-Consistency, which outperforms a single
prompt. However, since Self-Consistency is a method based on a
greedy approach, it cannot guarantee that the inference chain is
entirely correct. Additionally, its voting mechanism is atomic,
meaning it lacks the ability to differentiate the quality among various
responses.

In response to these challenges, DiVeRSe [146] was developed to
enhance answer reliability through a three-stage process: “generate-
verify-check”. First, it generates diverse completions using multiple
prompts. Next, a “step-aware voting verifier” model distinguishes
good answers from poor ones and verifies the correctness of
inference steps. DiVeRSe extends traditional methods by extracting
step-level labels from intermediate results, ensuring accuracy in the
inference flow. While it integrates the benefits of bagging Prompt
methods, DiVeRSe still relies on manual sample selection, and
sample bias can affect final results.

Motivated by these issues, the AMA (Ask Me Anything) method
was introduced [147]. AMA consists of two stages: the multiple
prompt step and the answer aggregation step. In the multiple prompt
step, AMA employs a functional prompt chain where the question()
function transforms the input into open-ended questions, providing
diverse perspectives for LLMs to address different aspects of the
problem. The answer() function then generates intermediate answers.
AMA highlights the limitations of simple voting due to equal
weighting and question similarity, which can distort results. To
overcome this, AMA uses an answer aggregation method based on
weakly supervised learning with an information entropy penalty,
ensuring that results better reflect different perspectives. Essentially,
AMA optimizes the Bagging random sampling approach.

e Boosting prompt. Boosting prompt methods often adopt a two-
[148]
algorithm on the prompt set, achieving good results in text

stage paradigm. PromptBoosting applies the AdaBoost
classification. However, the PromptBoosting method requires a
prepared high-quality prompt set and cannot optimize for specific
prompts.

To overcome these limitations, Prefer [149] establishes a feedback
mechanism to reflect on the shortcomings of the weak learners in the
current iteration. Based on feedback, Prefer also implements the
automatic synthesis and selection of prompts, avoiding the bias
problem brought by the prompts. PromptBoosting’s ensemble
method for weak learners refers to the traditional ensemble method
of weighted summation. However, many works have pointed out that
LLMs have a serious optimistic estimation problem [150,151]. This
makes the weighted calculation of answer accuracy unable to
eliminate content bias.

Bilateral Prompt Bagging [149] assesses the confidence of the
generated results in each iteration. When the assessment result of the
answer is not trustworthy, a reverse confidence evaluation is
performed, calculating the confidence that this answer is incorrect.
The final correct probability of a round of generated results is
evaluated by combining forward and reverse confidence. This design
of positive and negative confidence effectively avoids the optimistic
estimation problem of LLMs [150]. By leveraging the feedback
reasoning capabilities of LLMs (as discussed in Subsection 2.3), it
enhances the quality of single-round generated results, strengthens
weak learners, and ensures a more reliable and efficient final
outcome.

2) Value bias
We define value bias as the deviation between the content generated
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by LLMs and human societal values. The content generated by LLMs
often touches upon socially sensitive areas, such as issues of social
harm and discrimination [152,153]. Shaikh et al. [139] showed that
Chain of Thought (CoT) can continually enhance the performance of
LLMs across a variety of NLP tasks. However, this also increases the
likelihood of the model producing harmful or inappropriate results.
Research [154] indicates that CoT prompts should be used carefully
when dealing with socially relevant issues. Due to the principles of
autoregressive decoding inherent in LLMs, harmful text might still
be generated during the beam-search phase of the inference stage if
the volume of harmful text in the training corpus is large enough.
This underlines the importance of developing mechanisms to manage
and minimize harmful or socially unacceptable outputs for the safe
deployment of Al systems.

Tang et al. [155] proposed the Detox-Chain method, which links
detoxification sub-steps together to achieve rapid detoxification of
prompts. The Detox-Chain method reduces the possibility of LLM
generating toxic texts by substituting toxic textual representations.
However, due to the detoxification technology for prompts altering
the distribution or content of the prompt to varying extents, it affects
the quality of the output produced by the LLM. At the current stage,
the detoxification methods for LLMs are still primarily based on
reinforcement learning or knowledge editing techniques during the
training phase.

M 4 Applications

This section offers practitioners a comprehensive overview of current
application domains for LLMs and highlights the prompt engineering
techniques utilized across diverse use cases. While existing studies
[156] have introduced taxonomies for LLM applications, these
classifications tend to focus on specific scenarios, limiting their
relevance for prompt engineering design. To address this gap, we
propose a novel taxonomy that categorizes applications by task
characteristics into two primary types: cognitive applications and
of LLMs.
highlight LLMs’ roles in providing and processing information,

transformative applications Cognitive applications
whereas transformative applications involve tasks where LLMs
operate autonomously, potentially substituting human involvement.
This taxonomy provides detailed insights into prompt engineering
techniques tailored for each application category, as illustrated in

Fig. 1.

4.1 Cognitive applications of LLMs

Cognitive applications of LLMs involve utilizing these models to
acquire and analyze information. The process of leveraging LLMs to
extract and present knowledge is termed Information Acquisition.
This category applications chatbots,
professional knowledge Q&A, search engines, and training data

encompasses such as
augmentation. Conversely, when LLMs are employed to interpret
and analyze input data, the process is referred to as In-depth
Information Analysis. Key applications in this analytical domain
include the simulation of financial market dynamics and the
exploration of chemical molecular structures, showcasing the model’s
ability to provide insightful analyses and predictive insights across
specialized fields.

A comprehensive taxonomy of prompt engineering techniques for large language models

1) Information acquisition

Information acquisition is a fundamental application of LLMs,
leveraging their extensive knowledge base to efficiently deliver
relevant information to users.

Finding: Information acquisition is supported by various prompt engineering
techniques, which deliver the required information to users. Profile techniques
equip the LLM with detailed, task-specific prompt, enabling a more precise
context. Knowledge techniques provide the model with up-to-date,
task-relevant information, helping prevent overconfident responses. When
addressing specific queries, reasoning techniques enhance the model's
problem-solving capacity, significantly improving its ability to generate
accurate and reliable answers.

e Chatbots. General chatbots, also known as dialogue agents,
integrate tasks such as information retrieval, multi-turn interaction,
and text generation (including code). LLMs encapsulate extensive
knowledge within their parameters during training. Users can obtain
information from LLMs through role-playing dialogue, exemplified
by the chatbot [157].

For instance, Glaese et al. [158] introduced Sparrow, a dialogue
agent based on a 70B parameter Chinchilla LLM. It utilizes prompt
RAG Techniques
(Subsection 3.2) and Personality Information (Subsection 3.1), to
address hallucination issues by integrating external knowledge from
Google search queries.

Similarly, OpenAl [159] utilizes supervised fine-tuning with high-
quality data, along with reinforcement learning from human feedback
(RLHF), to develop the GPT-3.5 LLM, which powers the ChatGPT
chatbot. The subsequent GPT-4 model [160] underpins the ChatGPT
Plus chatbot.
Personality

engineering techniques, including Basic

ChatGPT employs prompt techniques such as
3.1) role-playing
conversations and Memory (Subsection 3.2) to maintain conversation
history, thereby excelling in extended discussions. Microsoft Copilot
[161] is an Al-powered productivity tool that integrates an LLM with

Microsoft 365. Supported by an OpenAl model, Copilot utilizes

Information  (Subsection for

additional integration tools (Subsection 3.3), accesses up-to-date

information via Bing, and incorporates Retrieval-Augmented
Generation (RAG) technology (Subsection 3.2) to enhance user
prompts.

Anthropic [162] introduces the Claude series of chatbots. These
bots are further refined via fine-tuning with high-quality data and
guided by RLHF to generate responses that are beneficial, harmless,
and honest. The Claude 3.5 Sonnet model has outperformed
competitor models in various Al system evaluation benchmarks,
including undergraduate-level expert knowledge (MMLU), graduate-
level expert reasoning (GPQA), and basic mathematics (GSMS8K).

e Search engines. Information Retrieval (IR) systems are integral
to dialogues, question answering, and recommendation systems,
serving as primary means of obtaining information. LLMs can
improve traditional IR components, such as query rewriters, and can
also function as the engine for generative retrieval.

(i) LLM-based query rewriter. The query rewriter enhances user
queries by adding synonyms or related terms to address vocabulary
mismatches and clarify ambiguities, thus aligning more accurately
with user intent. In conversational retrieval, the query rewriter
comprehends the context of the entire conversation, clarifying

ambiguous content and generating a more effective new query based
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on the user’s dialogue history.

HyDE [163] represents pioneering work on LLM-based query
rewriting, guiding LLM generation using various prompt engineering
techniques in Profile and Perception (Subsection 3.1). HyDE
generates detailed hypothetical documents based on the given query,
which are then retrieved from the corpus using a dense retriever.
Query2doc [24,164] exemplifies another innovative approach to
query rewriting, generating pseudo-documents by prompting LLMs
with a few demonstrations, reflecting the use of the Demonstration
Information approach (Subsection 3.1). These pseudo-documents are
subsequently expanded with generated documents. Based on prompt
engineering optimization, Jagerman et al. [165] studied the impact of
different prompting methods and model sizes on query rewriting
[165].

GFF [166] adopts a “generate, filter, and fuse” method for query
expansion, utilizing LLMs to extract related keywords from the
original query through a reasoning chain. GFF employs prompt
ensembling strategies (Subsection 3.4) to filter generated keywords
using techniques such as Self-Consistency [143], ensuring the quality
and relevance of keywords, which are then integrated with the
original query for downstream reranking tasks.

(i) LLM-based generative retrieval. Generative retrieval methods
utilize a unified model to directly generate document identifiers
(DocIDs) related to user queries, integrating prompt engineering
techniques. Traditional IR systems typically follow the “index-
retrieve-rerank” paradigm, which has proven effective in practice
[163,167]. However, the constituent modules —indexing, retrieval,
and reranking —operate independently. LLM-based generative
retrieval unifies these modules, initiating a new paradigm for IR
systems.

Researchers have demonstrated that LLMs, such as the GPT series,
can directly generate URLs related to user queries [168]. This
capability allows the LLM to function as a generative retriever,
producing document identifiers from the original input to obtain
relevant documents. Ziems et al. [168] introduced the LLM-URL
model, which employs the GPT-3 text-davinci-003 model to generate
candidate URLs. It utilizes the Demonstration Information approach
(Section 3.1) to standardize model output and incorporates a URL
filtering mechanism that extracts valid URLs from candidates using
regular expressions.

e Professional knowledge Q&A. The expansive capabilities of
LLMs enable them to possess specialized knowledge across various
fields, effectively organizing and presenting information to address
specific inquiries. This ability to provide accurate responses to user
queries is commonly referred to as professional question and answer
(QA).

LawGPT [169] is a robust language model designed to address
legal knowledge inquiries with high accuracy. It employs the LLM
internal feedback method (Subsection 3.3) to continually enhance its
precision in legal question answering. Through this approach,
LawGPT generates legal queries pertinent to specific legal texts and
subsequently provides responses in the form of “text segment-
question” pairs, ensuring that its answers are rich in legal
information.

MultiMedQA [170] is a benchmark that integrates clinical
expertise with medical knowledge, employing a Few-shot prompting
technique (Subsection 3.1). Collaborating closely with a panel of
seasoned clinicians, MultiMedQA produces exemplary few-shot
demonstrations and sample scenarios. Moreover, it adeptly
demonstrates Reasoning and Planning capabilities, exhibiting a
robust chain-of-thought process (Subsection 3.3) for a myriad of
medical issues by leveraging insights from various medical
professionals. Furthermore, MultiMedQA excels in internal feedback
(Subsection 3.3) verification, a crucial aspect in refining its accuracy.
Given the multifaceted nature of medical queries, it employs the self-
consistency strategy (Subsection 3.4), allowing the model to compare
and evaluate diverse perspectives to ensure coherence and reliability
in its responses.

e Training data augmentation. Due to the high cost of manually
annotating labels, a common challenge in training neural retrieval
models is the lack of training data. LLMs can learn patterns from
manually annotated data and generate additional data consistent with
the existing dataset.

Yoo et al. [171] proposed GPT3Mix, which generates synthetic
data from existing datasets based on the GPT3 LLM. GPT3Mix
employs the Demonstration Information method (Subsection 3.1) and
the Task Information method (Subsection 3.1). The prompts of
GPT3Mix include two parts: real examples from the dataset and task
specifications, which are used to create synthetic data and pseudo
labels.

Yoo et al. [171] utilized this new augmented dataset to fine-tune
BERT and DistilBERT models, achieving excellent performance in
classification tasks. In the context of information retrieval, it is easy
to collect many documents; however, the challenging and expensive
task is to collect real user queries and label the relevant documents
accordingly. Given the LLM’s powerful natural language processing
capabilities, many researchers [172,173] suggested using an LLM-
driven process to create pseudo queries or relevance labels based on
existing datasets.

In cutting-edge work, Dai et al. [174] introduced ChatAug, which
transforms training samples from a small dataset into multiple
samples that are conceptually similar but semantically distinct.
state-of-the-art

of test accuracy and augmented

ChatAug outperforms text data augmentation

methods in terms sample

distribution.

2) In-depth information analysis

In addition to providing information, LLMs can leverage their
reasoning capabilities to analyze patterns within specific data or
information. Applications requiring the evaluation of complex
systems are categorized under In-depth Information Analysis.

Finding: Unlike information acquisition, in-depth information analysis
presents LLMs with more complex challenges, such as financial market
analysis. Profile techniques provide task information and demonstrations,
enabling the LLM to better align with specialized requirements. By retrieving
more specific task data and memorizing essential information, knowledge
techniques further enhance the model's domain expertise. Employing
professional tools to assist with task handling can effectively support the
model in generating more valuable analysis.
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e Financial markets. By providing Internet-scale data for LLMs,
these models can utilize hybrid training methods in financial tasks,
the field.
BloombergGPT [175] is a formidable large language model with 5

driving  open-source development in financial
billion parameters, meticulously trained to excel in the intricate realm
of finance through vast datasets.

BloombergGPT combines prompt engineering technologies such as
personality information (Subsection 3.1) and external financial tools
(Subsection 3.3) to provide personalized, time-sensitive financial
advice. Its versatility extends across various tasks within the financial
sector, making it beneficial for professionals. Leveraging techniques
such as few-shot learning and other sophisticated methodologies,
scholars fine-tune BloombergGPT to suit specific task formats,
thereby enhancing its efficacy in delivering best-in-class results.

FinGPT [176] stands out as an open-source, large language model
tailored specifically for the financial sector, boasting versatile
applications such as robot consultation, algorithmic trading, and low-
code accessibility. Its remarkable capability lies in making
quantitative inferences from vast financial datasets, effectively
capturing the intricate dynamics of the financial markets. A key
feature of FinGPT is its adept utilization of external feedback
methods (Subsection 3.3) within prompt engineering. By leveraging
stock prices as indicators, FinGPT engages in reinforcement learning,
continuously refining its understanding and interpretation of financial
texts. This process empowers FinGPT to anticipate and predict
market responses to a wide array of financial events, thereby
enhancing its overall performance and utility in financial analysis and
decision-making.

The
encompasses the properties, composition, structure, and chemical

o Chemical molecules. study of chemical molecules
reactions of matter. This field involves complex computational and
predictive tasks, such as property prediction, chemical structure
optimization, and reaction prediction. As data scales increase,
traditional chemical computational methods can no longer meet the
demand, making the application of LLMs in chemistry increasingly
important.

BioinspiredLLM [177] is an autoregressive transformation large
language model specifically tailored for biomaterials and biomimetic
materials. This sophisticated model excels in accurately recalling vast
amounts of information pertaining to biomaterials, effectively
reflecting intricate patterns between various biomaterials, and
facilitating research tasks within this field. Scientific researchers
and BioinspiredLLM
accommodates this by offering additional contextual content when
queried. Moreover, the model leverages the Retrieve and Generate
(RAG) framework, based on Knowledge prompt engineering

continuously uncover new patterns,

techniques (Subsection 3.2), to provide comprehensive and insightful
answers.

ChatDrug [178]
capabilities to facilitate Al-assisted drug discovery endeavors.

harnesses conversational and reasoning
ChatDrug employs Chain-of-Thought (CoT) technology (Subsection
3.3) to decompose complex concepts into more understandable
attributes, thereby improving reasoning ability and problem-solving

efficiency. Additionally, ChatDrug incorporates prompt design

A comprehensive taxonomy of prompt engineering techniques for large language models

tailored for domain-specific modules, with the flexibility to
implement prompt functions via few-shot learning methodologies
(Subsection 3.1). Leveraging the Retrieve and Generate (RAG)
method (Subsection 3.2) ChatDrug’s
knowledge, thereby enhancing the quality of responses.

enriches professional
ChemCrow [179] enables reasoning across common chemistry
tasks such as material design and synthesis, from reasoning about
simple drug discovery cycles to planning the synthesis of substances
across a wide range of molecular complexity. ChemCrow combines
the inferential power of LLMs with the chemistry expertise of
computational tools (Subsection 3.2), successfully planning and
synthesizing an insect repellent, three organocatalysts, and guiding
the screening and synthesis of a novel chromophore with target
properties. Enhanced by the RAG method (Subsection 3.2) and
search engine tools (Subsection 3.3), ChemCrow can obtain scientific
information from the Internet and build relevant databases. It can also
accept external feedback from humans and adjust itself accordingly.

4.2 Transformative applications of LLMs

Transformative applications of LLMs facilitate automation and
enhance workflows traditionally dependent on human input. These
applications can be broadly categorized into physical world
applications and creative applications. Through prompt engineering,
LLMs can impact the physical world across various application
scenarios, including software engineering, robotics, and expert-level
task automation. Conversely, the impact of LLMs on creative
domains extends to areas traditionally reserved for human creativity
and artistic expression, including language generation, visual content
creation, and auditory processing. These enhancements contribute to
expanding human creativity and comprehension.

1) Physical world applications
Applications of LLMs in the physical world encompass areas such as
software engineering, robotics, and advanced automation.

Finding: The powerful capabilities of LLMs demonstrate their significant
potential to replace repetitive manual human tasks. Profile techniques provide
task-specific requirements and real-world environment information. In
specialized domains, such as Al-driven healthcare, knowledge techniques
supplement the model with domainspecific expertise, while enhancing
reliability by providing professional knowledge. Reasoning techniques can
effectively enhance the capabilities of LLMs in addressing a wide range of
complex real-world problems. Reliability techniques ensure that the model's
actions remain stable and dependable.

e Software engineering. One of the most advanced and widely
used applications of LLMs is generating and completing computer
programs in various programming languages. This section discusses
programming-specific LLMs, which are fine-tuned or pre-trained
specifically for programming applications. However, it is important
to note that general chatbots, which are partially trained on code
datasets (such as ChatGPT), are increasingly utilized in programming
tasks.

Code generation refers to the use of LLMs to output new code
based on the requirements provided in the prompts. Several LLMs
and methods have been proposed for computer programming.
OpenAl first released CodeX [50], an LLM based on GPT-3 (up to
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12B parameters) pre-trained on public datasets to generate
independent Python functions from natural language strings. CodeX
standardizes output using prompt techniques such as personality
information (Subsection 3.1) and few-shot prompting (Subsection
3.1).

The Copilot [161] plugin based on CodeX has also become a
benchmark for code generation assistance tools. The HumanEval [50]
dataset has become one of the commonly used benchmark datasets
for subsequent code generation. Nijkamp et al. [51] sequentially
trained CodeGen series LLMs (up to 16B parameters) on three
datasets: the natural language dataset (THEPILE), the multilingual
programming source code dataset (BIGQUERY), and the single-
language Python dataset (BIGPYTHON). CodeGen models have
been trained in various programming languages, including C, C++,
Go, Java, JavaScript, and Python. The results indicate that the largest
CodeGen model outperforms the Codex-12B model. CodeGen can
utilize CoT technology (Subsection 3.3) to enhance the reasoning
ability of generated code.

Nijkamp et al. [51] also tested CodeGen for multi-step program
synthesis, decomposing the program into multi-step natural language
prompts, with the synthesis system completing the synthesis of
subroutines at each step. They also created a multi-round
programming benchmark (MTPB) for the multi-round program
synthesis method. Due to its excellent performance across multiple
programming languages, Zheng et al. [180] trained CodeGeex on
The Pile, CodeParrot, and public repository
supplement data on GitHub. CodeGeex employs a standard
Transformer architecture, supporting high-precision code generation

three datasets:

while also enabling automatic translation and conversion of code
snippets between different programming languages.

e Robotics. Multimodal large language models are increasingly
applied in robotics, where robots interact with the physical world
through various methods. These models leverage their reasoning and
planning capabilities to guide robot actions.

PaLM-E [52], a general visual language model, incorporates
embedded data into multimodal training, serving as an effective
inference engine. Experimental results demonstrate that, in addition
to general visual language tasks, PaLM-E excels in tasks such as
entity capture, performing admirably in real desktop and mobile
manipulation scenarios. Fine-tuning of PaALM-E involves scaling the
language model size, enhancing its adaptability across different tasks
and environments. This multimodal approach ingeniously employs
prompt engineering across diverse tasks and scenarios. Task
information (Subsection 3.1) enables PaLM-E to discern the
attributes of various tasks, while task environment information
provides tailored scenarios for specific tasks. Additionally, PaLM-E
utilizes Target decomposition reasoning (Subsection 3.3) to break
down input tasks in advance, enabling the multimodal model to
provide more realistic and effective responses.

e Expert-level task automation. In contrast to applications aimed at
information retrieval, expert-level task automation involves
applications where LLMs serve as substitutes for human experts in
specialized fields. Examples include LLM-based agents that perform

the functions of professionals, such as legal advisors or medical

practitioners.

Wisdomlnterrogatory [55] is adept at responding to new legal
issues using existing legal documents and provisions within the field
of law. Through task information (Subsection 3.1), it can utilize
corresponding legal knowledge to answer consultations.
Wisdomlnterrogatory systematically clarifies attribute information,
information sources, task types, and answer plans for various legal
scenarios. It employs RAG technology (Subsection 3.2) for retrieving
relevant legal information and enhances relevance through pre-
retrieval optimization (Subsection 3.2). By prompting the LLM with
few-shots (Subsection 3.1), WisdomlInterrogatory can generate
tailored responses for specific legal tasks, ensuring effective
adaptation to a wide range of legal scenarios while providing
accurate and insightful answers.

ChatLaw [54] is a comprehensive legal language model crafted
from a deep understanding of the legal domain. It serves as a robust
tool for navigating complex legal issues, offering nuanced insights
and practical guidance derived from its comprehensive knowledge
base and advanced computational techniques. ChatLaw addresses
real-world legal challenges by synthesizing legal awareness,
relationships, behaviors, and other phenomena within the legal realm.
Leveraging prompt engineering within the legal domain, ChatLaw
significantly enhances the performance of the Chinese legal language
model. During the construction of its training dataset, ChatLaw
meticulously fine-tunes and supplements established datasets to
ensure relevance and accuracy. It employs RAG technology
(Subsection 3.2) to retrieve the latest legal information and utilizes
post-retrieval optimization (Subsection 3.2) to further refine its
responses and improve overall effectiveness.

ChatDoctor [53] is a pre-trained language model designed to
address medical queries and offer advice in medical contexts. One of
ChatDoctor’s notable features is its external knowledge brain, akin to
a Retrieval Augmented Generator (Subsection 3.2). This knowledge
repository encompasses a vast array of information on diseases,
symptoms, relevant medical tests, and more. Continuously updated
and refined, the knowledge brain retrieves new insights from sources
such as encyclopedias, medical literature, and other credible
references. With its robust dataset and access to a rich knowledge
base, ChatDoctor serves as a valuable resource for individuals
seeking medical advice. Its ability to understand patient needs and
provide tailored recommendations underscores its utility in guiding

users toward appropriate medical treatment options.

2) Creative applications
LLMs can be applied in the field of artistic creation, enabling more
efficient and intelligent art production.

Finding: With the support of prompt engineering techniques, LLMs are
able to generate artistic creations with exceptional efficiency. In both
literary and visual arts, profile techniques are employed to define specific
requirements and details for the creative process. Knowledge techniques
facilitate the retrieval of multimodal knowledge,enhancing the model's
creative capacity. While reasoning and reliability techniques are less
frequently appliedin artistic creation, this is largely due to the inherently
creative and less deterministic nature of artistic work.
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e [anguage. CoPoet [56] is a collaborative iterative poetry creation
model. Users can iteratively request suggestions from CoPoet
through natural language instructions, and CoPoet can generate
further content based on user input. Utilizing internal feedback
(Subsection 3.3), CoPoet refines the creation process or aids users in
their creations by assimilating user feedback.

Ippolito et al. [57] identified barriers to creative writing between
Al-driven writing agents and experienced professional writers. They
assessed the creative capabilities of the Al writing agent by engaging
experts in professional creation from diverse countries, races, and
backgrounds. These experts provided open-ended qualitative
feedback on the content generated by the Al writing agent. The
authors analyze the evaluation results and propose lessons that could
enhance the creative abilities of LLMs. Brainstorming emerges as a
crucial aspect of creation, and few-shot learning (Subsection 3.1) can
be employed to provide prompts for creativity. Task environment
information (Subsection 3.1) can help LLMs enhance imagination.
By providing environmental information to the language model,
detailed data
Additionally, the authors suggest that this could also be achieved
through methods like RAG (Subsection 3.2) and Automatic Post-
Editing (APE) [181].

e Vision. As a multi-modal large language model, Sora possesses

can facilitate more effective brainstorming.

the capability to process and generate images and videos. Sora excels
in a multitude of image and video editing tasks, including seamlessly
creating looped videos, animating static images, and extending video
duration forwards or backwards in time. Beyond merely inputting
text to produce videos, Sora can also utilize pre-existing images or
videos as few-shot inputs. This expanded functionality allows Sora to
undertake a broader spectrum of editing tasks, such as extending
videos and converting images into videos.

e Hearing. ChatMusician [58] adeptly integrates various musical
elements, crafting well-structured compositions. By unifying
symbolic music understanding and generation tasks, it generates
coherent pieces across styles. Utilizing prompt engineering,
ChatMusician explores musical creation dynamically. It formats
tasks with few-shot prompts (Subsection 3.1) to inspire the creation
of LLMs. It also adopts musician role-play prompts (Subsection 3.1)

to enhance its perspective.

B 5 Possible research opportunities

In this section, we outline several promising future research
directions that address key challenges in prompt engineering.
Although some directions are already covered in existing studies, as
discussed in Section 3, we believe these areas warrant further
exploration and development.

1) Prompt attack and defense

Due to the unique structure of LLMs, prompts serve as both
operational instructions and input data channels. This dual role
introduces risks, as specific prompts can be crafted to induce harmful
outputs from LLMs, a technique known as prompt attack [154].
Although recent research [182] has proposed defense mechanisms
against prompt attacks, few studies focus on prompt engineering as a

A comprehensive taxonomy of prompt engineering techniques for large language models

defense strategy. Adjusting the content or structure of prompts may
help prevent generating risky responses. Profile and instruction, in
Subsection 3.1, may be useful in such cases, as it provides a
framework for organizing prompt content and structure.

2) Thinking powered RAG

Recent studies [183] indicate that applying Retrieval-Augmented
Generation (RAG) in all contexts may not consistently enhance LLM
capabilities. Integrating RAG with reasoning techniques, such as
feedback mechanisms [184], could improve the cognitive efficacy of
RAG, facilitating its application in a more contextually appropriate
manner. Current methods [184,185] predominantly rely on pre-
training and lack interpretability. Developing quantitative approaches
to guide retrieval processes and enhance interpretability represents a
compelling research direction.

3) Multi-Hop retrieval-augmented generation

The Multi-Hop Question Answering (MHQA) task [23,186] focuses
on answering questions that require gathering information from
multiple sources and performing multi-step reasoning to arrive at
comprehensive answers. Enhancing both the relevance of retrieved
documents and the accuracy of reasoning across multiple documents
can significantly improve the performance of LLMs on these
complex questions. As a straightforward solution, recent studies
[31,32] have integrated retrieval into the chain-of-thought reasoning
process, enabling LLMs to leverage retrieved documents for answer
generation. However, inevitable noise in retrieved documents may
mislead LLMs toward incorrect reasoning paths, resulting in
erroneous answers [187]. Rather than solely enhancing reasoning
capabilities, optimizing retrieved materials through prompt
engineering presents a promising approach to improve prompt
effectiveness.

4) Advanced reasoning with rationales

Techniques like Chain of Thought (CoT) [30] and Least-to-Most [97]
have shown potential for improving LLM reasoning. However, these
methods primarily structure reasoning pathways without genuinely
enabling LLMs to internalize the underlying rationale. Techniques
like CoT establish fixed reasoning pathways for LLMs, akin to rapid
brainstorming. Research [188] indicates that slower, more deliberate
thinking is often more effective for solving complex problems. While
some research [188,189] has explored ways to strengthen the
rationale capabilities of LLMs, numerous avenues for further
exploration remain. This enhancement in the reasoning process
closely aligns with findings in ol [190], underscoring the substantial
potential of these techniques.

5) Domain-specific prompt engineering frameworks

With the expanding application of LLMs across diverse fields, the
development of domain-specific prompt engineering frameworks has
become a prominent research focus. Optimizing prompts tailored to
sectors such as healthcare, law, and finance enables LLMs to produce
more accurate, dependable, and efficient outputs [53,169]. As
domain-specific agents advance, there is a corresponding rise in
specialized agent components and models trained for distinct fields.
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Prompt engineering remains central to facilitating interactions
between LLMs and various tools [47]. Substantial work is still
required to design prompt engineering frameworks that align with the
professional standards essential for domain-specific agents.

6) Automatic optimization of prompt

Prompt engineering is a crucial technique directly influencing the
responses generated by LLMs. This approach fundamentally differs
from programming techniques, as systems based on prompts are
guided rather than explicitly programmed. The specific LLM and the
details within the prompts both influence the model’s output, a topic
that will be further discussed in Section 6. Although some research
has explored the interpretability of prompts, it typically identifies
only the most significant factors that influence the consistency of
generated responses. Thus, optimizing prompts remains a challenge.
This includes providing explanations for prompts that lead to
erroneous answers and automating the optimization of prompts.
Exploring automatic optimization within the prompt space and
integrating automation with existing prompt techniques represent a
practical future research avenue.

B 6 Summary of findings and insights

e Principles of prompt engineering. Recent studies [33,191] position
the
autoregressive structure of LLMs, prompts function not only as the

prompt engineering as an empirical approach. Due to
primary interaction method but also as critical determinants of model
outputs. Unlike traditional software engineering, where systems are
explicitly programmed, prompt engineering for LLMs relies on
guiding model behavior through input modifications. The model’s
performance is highly sensitive to specific prompt details without any
obvious reason those details should matter. Most advanced
techniques that leverage this insight, such as the reasoning methods
described in Subsection 3.3, are grounded in experimental practices
rather than theoretical constructs. Given the impressive capabilities
of LLMs, empirically driven approaches to prompt engineering
remain essential.

o Prompt design factors. In this paper, we introduce a
comprehensive taxonomy for prompt engineering, which synthesizes
effective empirical insights into distinct modules for prompt design.
The profile and instruction establish the foundational structure of
prompts, emphasizing that role information, task information, and
example information are critical components in the prompt design.
Prompt enhancement techniques are essential for the application of
LLMs in real-world scenarios. Currently, knowledge and reasoning
are effective strategies for enhancing prompts, as they improve LLM
performance by incorporating specific details, such as additional task
information and reasoning examples. Although future techniques for
augmenting prompt details may emerge, significant research is still
required in the domains of knowledge and reasoning. Prior study
[192] indicates that the introduction of noise knowledge can enhance
LLM performance, highlighting the necessity for more accurate and
interpretable knowledge techniques. For instance, employing
knowledge graphs can facilitate the acquisition of more precise
[193].

external knowledge From an engineering perspective,

reliability enhances LLM systems by integrating diverse prompt
techniques. It is grounded in the principles of ensemble learning,
where techniques such as voting are employed to retain the most
stable model responses. Future advancements in prompt engineering
can consider these factors comprehensively to design prompts that
not only align closely with task requirements but also maximize
model performance.

e Post-training impact on prompt engineering. Recently, OpenAl
introduced the ol family of models [190], which have demonstrated
breakthrough performance in software engineering and scientific
tasks. The ol model integrates inference processes—such as Chain-
of-Thought (CoT) reasoning —into its training framework. By
allowing for extended reasoning time, the ol model enhances its
overall problem-solving capabilities. With advancements in such
LLMs, reasoning, planning, and reliability techniques are likely to be
integrated into future frameworks. At present, profile, instruction,
and knowledge technologies remain indispensable due to their
relevance to practical tasks.

e Limitations and challenges in prompt engineering. Despite
significant advancements in prompt engineering for enhancing large
language model (LLM) performance, several critical challenges
persist. These challenges pertain to highly ambiguous tasks,
adversarial tasks, and scalability in dynamic environments. First,
LLMs frequently encounter ambiguous prompts that may lead to
multiple plausible answers. Traditional methods often struggle to
balance response relevance and diversity. To address this issue, Sun
et al. [194] proposed AmbigPrompt —an iterative prompting
framework that adaptively guides the LLM to generate distinct and
pertinent responses, thereby mitigating ambiguity in user queries.
Second, LLMs remain susceptible to adversarial attacks, such as
jailbreaking prompts, which can trigger the generation of
inappropriate or harmful content. In response, Paulus et al. [195]
introduced AdvPrompter, a technique that employs a secondary LLM
to rapidly generate human-readable adversarial prompts. This work
highlights the urgent need for robust defense mechanisms against
such vulnerabilities. Third, scaling prompt engineering techniques to
more complex or dynamic environments presents substantial
challenges. Kepel and Valogianni [196] addressed this issue with the
development of the Automatic Prompt Engineering Toolbox (APET),
which enables GPT-4 to autonomously apply prompt engineering
techniques. This automation is pivotal for managing scalability
concerns effectively. While these advancements offer promising
solutions to some of these challenges, further research is necessary to
fully overcome these limitations.

B 7 Conclusion

Prompt engineering is gaining increasing significance across various
application domains as a crucial technique for optimizing the
performance of large language models (LLMs). Drawing inspiration
from the division of agent functions, this survey systematically
categorizes prompt engineering techniques into four distinct aspects.
This structured approach offers a clear and comprehensive review of
the existing research in this area. With a new taxonomy, we examine
the applications of LLMs that utilize prompt engineering, presenting
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specific case studies and empirical results that illustrate the
effectiveness of these techniques across different tasks. We aspire for
this survey to serve as a comprehensive guide for readers,
illuminating the advancements in prompt engineering and offering
valuable insights into its practical applications.
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