
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

MonoNN: Enabling a New Monolithic Optimization
Space for Neural Network Inference Tasks

on Modern GPU-Centric Architectures
Donglin Zhuang, The University of Sydney; Zhen Zheng, Alibaba Group;

Haojun Xia, The University of Sydney; Xiafei Qiu, Junjie Bai, and Wei Lin,
Alibaba Group; Shuaiwen Leon Song, The University of Sydney

https://www.usenix.org/conference/osdi24/presentation/zhuang

MonoNN: Enabling a New Monolithic Optimization Space for Neural Network
Inference Tasks on Modern GPU-Centric Architectures

Donglin Zhuang †∗⋄, Zhen Zheng ‡∗, Haojun Xia †⋄, Xiafei Qiu ‡, Junjie Bai ‡, Wei Lin ‡

Shuaiwen Leon Song †

†The University of Sydney ‡Alibaba Group

Abstract

In this work, we reveal that the kernel-by-kernel execution
scheme in the existing machine learning optimizing compilers
is no longer effective in fully utilizing hardware resources pro-
vided by the advances of modern GPU architectures. Specifi-
cally, such scheme suffers from severe non-computation over-
head and off-chip memory traffic, making the optimization
efforts from the state-of-the-art compiler techniques greatly
attenuated on the newer generations of GPUs. To address
this emerging challenge, we propose MonoNN, the first ma-
chine learning optimizing compiler that enables a new mono-
lithic design and optimization space for common static neural
network (NN) inference tasks on a single GPU. MonoNN
can accommodate an entire neural network into a single
GPU kernel, drastically reducing non-computation overhead
and providing further fine-grained optimization opportuni-
ties from the newly formed monolithic optimization space.
Most importantly, MonoNN identifies the resource incom-
patibility issue between various NN operators as the key
design bottleneck for creating such a monolithic optimiza-
tion space. Then MonoNN effectively tackles it by system-
atically exploring and exploiting the parallelism compensa-
tion strategy and resource trade-offs across different types
of NN computations, and by proposing a novel schedule-
independent group tuning technique to significantly shrink
the extremely large tuning space. Finally, MonoNN provides
a compiler implementation that incorporates our proposed
optimizations and automatically generates highly efficient
kernel code. Extensive evaluation on a set of popular produc-
tion inference tasks demonstrates that MonoNN achieves an
average speedup of 2.01× over the state-of-the-art frame-
works and compilers. Specifically, MonoNN outperforms
TVM, TensorRT, XLA, and AStitch by up to 7.3×, 5.9×,
1.7× and 2.9× in terms of end-to-end inference performance,
respectively. MonoNN source code is publicly available at
https://github.com/AlibabaResearch/mononn.

BERT-Tiny
BERT-Base

ViT GPT2T5-Base
0

20
40
60
80

%
 o

f N
on

-c
om

p.
Ov

er
he

ad

T4 A10

(a) Percentage of non-computa-
tion overhead on two genera-
tions of inference GPUs.

BERT-Tiny
BERT-Base

ViT GPT2T5-Base
1.0
1.4
1.8

A1
0

Sp
ee

du
p

ov
er

 T
4

Kernel E2E

(b) GPU kernels-only speedup vs
end-to-end (E2E) speedup by shift-
ing hardware from T4 to A10.

Figure 1: Low hardware utilization for inference caused by
growing non-computation overhead.

1 Introduction

In recent years, machine learning (ML) inference tasks
have become one of real-world systems’ most fundamen-
tal computation types. Existing optimization approaches
[2, 7, 18, 24, 39, 41, 42] transform an ML computational graph
into hundreds or thousands of computation kernels, and of-
fload them onto high-performance AI accelerators, e.g., GPUs,
for drastic latency reduction. However, with the increasing
hardware advances of these complex GPUs on computation
capability, the traditional kernel-by-kernel execution scheme
is no longer effective in fully utilizing hardware resources.

Take XLA [2] as an example, which is one of the most pop-
ular and effective optimizers for ML workloads, Fig.1a shows
the non-computation overheads (i.e., the end-to-end inference
latency minus the pure kernel execution time on GPU) of five
popular models on two generations of NVIDIA GPUs. Typi-
cally, the non-computation overhead mainly originates from
frequent context switches between the host and GPU, e.g.,
framework scheduling and kernel launching. With the signifi-
cant increase in computing power from T4 to A10, although
the NN operators are executed faster, the non-computation

⋄Work was done when interned at Alibaba.
∗Equal contribution.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 989

https://github.com/AlibabaResearch/mononn

overheads tend to dominate the end-to-end performance, As
illustrated in Fig.1b, the achieved end-to-end performance
speedup can be far less than the kernel execution speedup
when shifting across generations of hardware.

Moreover, the recent increase in computing power remains
faster than that of memory bandwidth in recent generations
of GPUs [42], making off-chip memory traffic among differ-
ent GPU kernels within a model a significant performance
bottleneck. Furthermore, there is a common scenario that
often occurs in real-world systems and exacerbates the situa-
tion: CPUs are usually busy with data pre-/post-processing
for real-time ML tasks, causing further delays in schedul-
ing and launching their GPU kernels and subsequently in-
creasing the non-computation overhead. To the best of our
knowledge, although the kernel fusion scope and the corre-
sponding techniques might be different, all the existing ML
compilers [7, 18, 24, 39, 41, 42] suffer from performance is-
sues discussed above due to the fundamental kernel-by-kernel
execution scheme. Therefore, there is an urgent demand for
a general solution with minimal non-computation overhead
that can be widely applied to common ML inference tasks.

In this paper, we make a key observation that there exists
a monolithic design and optimization space accommodating
a wide spectrum of prevalent static DNN models in single
GPU inference (Sec.3). MonoNN keeps the computation flow
of the entire neural network on the GPU side without going
back to the host to seek scheduling control. Such a scheme
effectively avoids the non-computation overhead caused by
the CPU-GPU context switch. With the structure of modern
static DNNs consisting of repetitive layers, it would be more
justified to aggressively enlarge the fusion scope, even result
in a single kernel1.

However, it is non-trivial to provide a general optimiza-
tion scheme to consolidate all types of computations of an
entire neural network into a monolithic kernel, while guaran-
teeing high performance and providing further fine-grained
optimization opportunities from the newly formed monolithic
optimization space. We observe that the main difficulty in
forming such an optimization space is resource incompatibil-
ity between different types of neural network computations.
On the one hand, a resource configuration that favors some
operators can lead to a dramatic drop in performance on some
other operators (e.g., low thread-level parallelism for GEMM
computation is inefficient for element-wise operators). On
the other hand, the resource configuration (e.g., parallelism
configuration, register, and shared memory allocation) is fixed
during the lifetime of a GPU kernel. Failure in reconciling
such resource incompatibility in a monolithic kernel will re-
sult in poor performance. Furthermore, accommodating all
operators of a complete NN into one GPU kernel results in an
extremely large optimization space, making it very difficult
for performance tuning on the whole computation graph.

1We also present a study on the fusion granularity under the monolithic
optimization space in Sec.7.3

To address these emerging problems, we propose MonoNN,
an ML optimizing compiler that enables a new monolithic
optimization space for common NN inference tasks on mod-
ern GPU-centric architectures. Specifically, to address the
significant resource incompatibility issue and accommodate
the different resource requirements from various operators,
we propose a context-aware instruction rescheduling tech-
nique (Sec.4.2.2). The key insight is to exploit the hidden
instruction-level parallelism (ILP) for memory-intensive com-
putations (e.g., element-wise, reduction) to compensate for
the loss of the thread-level parallelism (TLP) under the mono-
lithic kernel context. To further accelerate memory access,
MonoNN classifies the memory access patterns into stream-
ing and temporal, and comprehensively exploits all types of
on-chip memory resources for the access patterns accordingly
(Sec.4.3). It further exploits whole-graph level transformation
inside the kernel to rearrange independent subgraphs together
to reduce global thread barrier overhead (Sec.4.4). Finally, we
systematically abstract the optimization space of the mono-
lithic kernel and propose a schedule-independent group tuning
approach to drastically compress the tuning space (Sec.5). Ex-
tensive evaluation on a set of neural network inference tasks
demonstrates that MonoNN outperforms the state-of-the-art
optimizers with an average of 2.01× speedup. Specifically,
MonoNN outperforms TVM, TensorRT, XLA, and AStitch
by up to 7.3×, 5.9×, 1.7× and 2.9× in end-to-end inference
performance. To summarize, this work makes the following
contributions:
• To the best of our knowledge, MonoNN is the first ML opti-

mizing compiler that discovers a new monolithic optimiza-
tion space for common static DNNs’ inference scenarios
that are served on a single GPU, and provides automatic
high-performance kernel generation. This is also the first
study that explores and evaluates this monolithic optimiza-
tion design space and its limitations so that the community
has a better understanding of the tradeoffs;

• It is the first optimizing compiler that explicitly exploits
instruction-level parallelism optimization for memory-
intensive operators to compensate for thread-level paral-
lelism loss, enabling a new optimization dimension for
neural network inference optimization;

• MonoNN enables a sophisticated compression mechanism
to significantly shrink the tuning space for our proposed
monolithic NN kernel;

• Extensive evaluation results have demonstrated the effec-
tiveness of MonoNN on both single inference tasks as well
as multi-inference processing scenarios.

2 Background and Motivation

Emerging Challenges in Optimizing NN Inference. From
an optimization perspective, operators in neural network
(NN) models can be classified into two categories,
compute-intensive operators and memory-intensive opera-

990 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CPU Free 50% CPU Pressure 70% CPU Pressure

P50 P70 P954

6

8

TF
 X

LA
La

te
nc

y
(m

s)

(a) Tail latency.

4 5 6 7 80.0

0.5

1.0

1.5

2.0

D
en
si
ty

(b) Latency distribution (ms).

Figure 2: T5 model latency statistics under each CPU pres-
sure. The input sequence length is 128. (a): P50/P70/P90 tail
latency. (b): latency distribution.

tors. Compute-intensive operators are typically composed
of heavy arithmetic computations (e.g., GEMM and Conv),
while memory-intensive operators are typically bounded by
memory bandwidth (e.g., element-wise and reduction opera-
tions). Note that previous studies [18, 41, 43] have concluded
both types of operators can dominate the execution time.

With the rapid growth of computing power for recent GPU
generations2, the execution time of compute-intensive opera-
tors decreases drastically. For example, Tensor Core brings an
order of magnitude improvement in arithmetic unit through-
put for compute-intensive operators since NVIDIA Volta ar-
chitecture [3] (similarly, Matrix Core was also introduced
in AMD GPUs since CDNA architecture [8]). However,
there exists a disproportionate performance gain between
hardware throughput improvement and end-to-end inference
speedup. For instance, for the two common inference GPUs,
NVIDIA A10 GPU has 1.9× more half-precision floating
point throughput than its predecessor NVIDIA T4, while
we only observe a 1.6× end-to-end inference speedup for
the BERT model3 [19] with XLA compiler optimization en-
abled [2]. Furthermore, we identified two emerging funda-
mental difficulties in optimizing inference scenarios on in-
creasingly advanced modern GPUs:

(i) Continuous advances in computation throughput leads
to an increasing portion of non-computation overhead.

Faster GPUs can offer shorter per-kernel execution in NN
inference. However, the major portion of performance gains
from hardware speed improvements for regular-size models
begins to diminish as non-computation overhead becomes
a notable portion of end-to-end latency. This new bottle-
neck mainly originates from frequent non-computation over-
head which includes (1) context switch between host and
GPU accelerator due to framework scheduling and kernel
launch, and (2) off-chip memory traffic between operators.

2In this work, we focus our discussion on the most widely-adopted
general-purpose AI accelerators: GPUs. Although the technical terminolo-
gies used in this paper are adopted from NVIDIA GPUs [4, 5], our proposed
techniques aim to serve as general principles that are valuable for modern
general-purpose machine learning system designs, and are applicable to other
SIMT accelerators [8].

3Data is collected under TensorFlow XLA v2.7 with Tensor Core enabled,
using 1 as the batch size and 128 as the sequence length.

BERT-Tiny BERT-Base ViT T5-Base0
200
400
600

Ke
rn

el
 C

ou
nt

1 1 1 1

TVM TF XLA AStitch TensorRT MonoNN

Figure 3: Number of inference GPU kernels for existing
frameworks and MonoNN (1).

As the breakdown of the overall context switch overhead
in Fig.1a, our measurements indicate that the framework
scheduling accounts for 38.3% while the kernel launching
overhead accounts for around 61.7% (see Sec.7.2.5 for more
details). As for off-chip memory traffic, the memory band-
width growth across hardware generations is generally slower
than that for arithmetic throughput. Fig.1a demonstrates the
non-computation inference overhead via XLA optimizations
for five common models. It is worth noting that A10 suffers
from more severe non-computation inference overhead than
its predecessor T4 as newer generations of GPUs have much
shorter per-kernel duration. Fig.1b illustrates that there is an
average of 1.64× kernel execution speedup benefiting from
shifting the underlying accelerator from T4 to A10. Unfortu-
nately, such speedup decreases to 1.48× for the end-to-end
latency as the non-computation overhead is not the highest
optimization priority for the existing inference engines. Thus,
the non-computation inference overhead for neural network
models is becoming increasingly essential for the next gener-
ations of faster GPU hardware [6].

(ii) Ever-present, non-negligible CPU workloads exacer-
bate non-computation overhead.

Moreover, a commonly neglected factor is that CPU is usu-
ally busy with pre- and post-processing of input and output
for NN tasks in real-world execution. Thus, CPU contention
often further delays the scheduling and kernel launching of a
large number of GPU kernels within a model execution. This
further exacerbates the CPU-GPU context switch overhead
and makes it a much more severe problem, causing an addi-
tional slowdown of model inference tail latency. In Fig.2a,
when measuring the tail latency under XLA optimizations on
a server with a 64-core CPU (128 threads) and an NVIDIA
A10 GPU under 50% (70%) CPU utilization, the tail latency
increases by 25% (52%), 26% (58%), and 26% (82%) at P50,
P70, and P95, respectively, over the latency of an idle CPU.
Fig.2b shows a detailed inference latency distribution of 1000
times of inference when CPU is under various utilization.
With the increasing CPU contention, the end-to-end inference
latency belongs to a wider range of much slower outliers. Note
that it is impractical to designate a specific CPU core exclu-
sively just for kernel launching in the datacenter because the
CPUs are typically very busy performing pre-/post-processing.
Besides, designating such a core requires a hardcoded list of
CPU cores to be isolated from the default CPU scheduler in
the system boot phase, resulting in rebooting for every new

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 991

Compute-Intensive Ops Memory-Intensive Ops

 Pareto-optimal On-chip Resource Allocation Curve

10
4

10
50

50
100
150
200
250

R
eg

/T
hr

ea
d

10
4

10
5

0
20
40
60
80

S
m

em
/B

lo
ck

 (K
B

)

Achieved Active Threads

Figure 4: Different resource requirements between compute-
intensive operators and memory-intensive operators for Ten-
sorRT BERT inference. Each data point may represent multi-
ple GPU kernels with similar resource usage within a model.

inference service deployment.

Challenges in the State-of-The-Art Designs. TVM [18]
applies a basic fusion strategy but still unnecessarily launches
a large number of kernels. Some recent works propose more
advanced fusion techniques to alleviate the problems above.
AStitch [41, 42] leverages hierarchical GPU memory to fuse
multiple memory-intensive operators with complex data de-
pendencies into a single GPU kernel, named stitch optimiza-
tion. TensorRT [11] also exploits a similar strategy since v8.

Although it helps reduce the kernel number to some ex-
tent, it still results in a large number of kernels since it is
not capable to fuse globally along with all the compute-
intensive operators, for which the bottlenecks that we dis-
cussed above still exist. As illustrated in Fig.3, TVM, XLA,
TensorRT, and AStitch are all launching a large number of
kernels during model inference. Furthermore, Rammer [24]
partially addresses this problem with a persistent-thread tech-
nique [14, 17] to generate the schedule of multiple operators
within one kernel. However, Rammer is incapable of handling
the resource incompatibility between different operators in
an entire neural network (see Sec.3.1). As a result, Rammer
has to partition the neural network into separate GPU kernels
for NN inference. For example, Rammer still launches 734
kernels on GPU for BERT-Large [19] model inference.

3 Monolithic Optimization Space

To address the emerging challenges discussed in Sec.2, we
explore the monolithic optimization space where the entire
neural network can be compiled into a single GPU kernel.
This approach is appealing because it only incurs minimal
non-computation overhead and enables the opportunities for
whole graph optimization within the same kernel space. How-
ever, a general approach enabling this optimization space is
non-trivial, especially when handling various NN models with
very different execution patterns. Here we summarize two ma-
jor challenges to auto-generate a highly-efficient GPU kernel
containing all the operators of a given neural network.

Thread Parallelism

CI Ops Optim. Space

Inefficient
Code Generation

Space

MI Ops Optim. Space

MonoNN MI Ops
Optim. Space

MonoNN Joint
Optim. Space

O
n

-c
h

ip
 R

es
o

u
rc

e
U

sa
ge

Inefficient
Code Generation

Space

(a) Conventional
Optim. Space

(b) Monolithic
Optim. Space

On-chip Resource
Limit

Figure 5: Optimization space comparison.

3.1 Main Challenges of Enabling A Monolithic
Kernel Optimization Space

Challenge 1: Resource incompatibility between compute-
intensive and memory-intensive operators. The resource
incompatibility between compute-intensive and memory-
intensive operators hinders the state-of-the-art techniques to
consolidate all operators into a monolithic kernel. Compute-
intensive operators usually require a large amount of on-
chip resources (e.g., registers and shared memory) whereas
memory-intensive ops rely on massive concurrent threads to
hide off-chip memory access. Thus, it is extremely difficult
to accommodate all types of operators by creating a GPU
kernel with both high on-chip usage and massive concurrent
threads due to the resource constraints on modern GPUs. For
example, the active TLP on an SM core will inevitably drop
when a kernel uses a large number of registers and shared
memory due to the limited on-chip resources. We illustrate
this phenomenon quantitatively using GPU kernels from a
TensorRT optimized BERT [19] and the Pareto-optimal on-
chip resource allocation curve on an NVIDIA A10 GPU in
Fig.4. Compute-intensive kernels in NN models tend to be
closer to the upper-left corner, representing high on-chip re-
source allocation and relatively low achieved concurrently
active threads. In contrast, memory-intensive kernels tend to
be closer to the bottom-right corner, representing low on-chip
resource allocation and massive concurrently active threads
(or high TLP). All data points in Fig.4 are subject to resource
constraints and thus will not be above the Pareto-optimal
curve.

Challenge 2: Extremely high implementation cost and
huge tuning space. Modern ML models usually consist of
thousands of operators with diverse computation patterns,
resulting in intricate data dependencies. Manual implemen-
tation and optimization are no longer viable for developing
a monolithic kernel. In terms of compiler optimization, the
monolithic kernel approach significantly expands the opti-
mization search space as all the operators coexist within the
same kernel. Consequently, it becomes exceedingly challeng-
ing to identify suitable configurations and implementations
for each operator to achieve optimal end-to-end inference
efficiency within a monolithic kernel collectively.

992 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.2 A High-level Glance of MonoNN
The ultimate objective of MonoNN is to create an efficient
joint optimization space for both compute-intensive operators
(CI Ops) and memory-intensive operators (MI Ops). However,
as elaborated in Fig.4 and Sec.3.1, these two types of operators
naturally reside in disjoint optimization space in conventional
solutions due to resource incompatibility. We conceptually
illustrate this observation in Fig.5(a).

MonoNN enables a new monolithic optimization space
that can effectively accommodate both CI Ops and MI Ops.
The key idea is to align the optimization space of MI Ops as
closely as possible with that of CI Ops (Fig.5(b)). Specifically,
MonoNN leverages the hidden instruction-level parallelism
(ILP) to offset the reduction in TLP for memory-intensive
subgraphs, thereby achieving a similar resource allocation to
CI Ops (Sec.4.2.2). Furthermore, MonoNN strategically uti-
lizes abundant on-chip resources, including registers, shared
memory, and cache, to buffer and prefetch off-chip data based
on an analysis of memory access patterns (Sec.4.3). This ap-
proach enables both CI Ops and MI Ops to coexist within the
same monolithic kernel efficiently. Additionally, MonoNN
explores global optimization opportunities to minimize global
synchronizations between computations, further enhancing
the efficiency of neural network models (Sec.4.4).

4 System Design

4.1 Overview of MonoNN
Fig.6 illustrates the overview of MonoNN. MonoNN first for-
mulates the input neural network into different subgraphs
for subsequent optimizations (Fig.6(1), Sec.4.2.1). Then,
MonoNN enables the hidden parallelism of memory-intensive
subgraphs through context-aware instruction rescheduling
(Fig.6(2), Sec.4.2.2), and comprehensively optimizes the us-
age of various on-chip resources according to memory ac-
cess patterns (Fig.6(3), Sec.4.3). Next, it reorders and clus-
ters subgraphs to reduce the required Global Thread Barriers
(GTBs) to minimize the synchronization overhead (Fig.6(4),
Sec.4.4). Finally, MonoNN abstracts, compresses, and tunes
for the large monolithic optimization space with schedule-
independent group tuning, and compiles the monolithic kernel
into an executable binary (Fig.6(5)-(6), Sec.5).

4.2 Exploiting Hidden Parallelism for
Memory-intensive Subgraphs

We address the resource incompatibility issue discussed in
Sec.3 for memory-intensive computations with context-aware
instruction rescheduling (the compute-intensive computations
will be discussed in Sec.4.5.) MonoNN performs instruction
rescheduling under the context of monolithic optimization
space to recover potential TLP loss for memory-intensive
computations with high-level instruction-level parallelism
(ILP) enhancement. Thereby, MonoNN fully leverages the

SIS 1

SIS 1 SIS 2

Monolithic Kernel

Assign:

(1) Subgraph Formulation

CI Op

(2) Subgraph Inst. Reschedule

SIS 1

SIS 2

(3) On-chip Resource Exploitation

+Register
Buffering

+SMEM Pipelining

+Caching

Pattern
Analysis

(4) GTB Assign & Merge

(6) Automatic Code Generation

Merge:

Best schedule for each SIS and CI Op

OCS EWS

SIS 1 SIS 2CI Op

(5) Schedule-Independent
Group Tuning

Tune
Schedule 1

Tune
Schedule 2

Tune
CI Op

Element-wise Op Reduction Op Compute-intensive Op (CI Op)

SIS 1 SIS 2

P
ar

al
le

l I
n

st
.

SIS 2
Iter 1Iter 1 Iter 2Iter 2 Iter 1Iter 1 Iter 2Iter 2

Figure 6: MonoNN overview. SIS: Schedule-independent
subgraph. EWS: Element-wise subgraph. OCS: Output-only
contracted subgraph.

abundant registers under the new monolithic optimization
space to unleash the hidden potential of reaching high perfor-
mance.

4.2.1 Memory-intensive Subgraph Formulation
Before unveiling the details of context-aware instruction
rescheduling, we first present how subgraphs are formulated
as the basic units of optimization exploration. MonoNN con-
verts the whole graph of a model into one kernel. Instead of
optimizing and generating the code of the whole graph all
in one shot, MonoNN generates the schedules4 of different
partitions (i.e., subgraphs) of the graph separately under the
same monolithic context, and then stitches them together with
shared memory or global memory data buffering.

Subgraph Formulation. The compute-intensive operators
divide the whole computation graph into a set of memory-
intensive subgraphs. We use the following criterion to further
categorize memory-intensive subgraphs based on data depen-
dencies between data elements in input and output tensors.

Formally, for a subgraph with m input tensors
[X0,X1, · · ·Xm−1] and n output tensors [Y0,Y1, · · ·Yn−1],
the computation of the subgraph is: [Y0,Y1, · · ·Yn−1] =
f ([X0,X1, · · ·Xm−1]). If each pair of Xi ∈ [X0,X1, · · ·Xm−1]

and Yi ∈ [Y0,Y1, · · ·Yn−1] that ∂Yi
∂Xi
̸= 0 satisfies

∀ey ∈ Yi,
∣∣∣{ex| ∂ey

∂ex ̸= 0,ex ∈ Xi}
∣∣∣ ≤ 1, in which ex rep-

resents a scalar data element in tensor Xi and ey represents
a scalar data element in tensor Yi. It indicates that all data
elements in any of the output tensors rely on at most one data
element in one input tensor. We call a subgraph with such
property as an element-wise subgraph (or EWS).

4In code generation, schedule means how the threads are mapped to
hardware to process the data (e.g., tiling size, on-chip resource configuration,
parallelism configuration for GEMM code generation).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 993

Parallel DOALL For i = blockIdx.x to M:

 Parallel DOACROSS For j = threadIdx.x to N:

 Compute Sub_DOALL_Loop_1(j)

 Run Collective Block Reduction

 Parallel DOALL For j = threadIdx.x to N:

 Compute Sub_DOALL_Loop_2(j)

Input
[MxN]

Exp

Reduce Sum

Broadcast

Div

Output
[MxN]

(a) Softmax (b) Schedule Assignment on SIS (c) Inst. Reschedule

Resource Usage

Resource Usage

(d) Resource

Pseudocode Sub-DOALL Loop

Sub-DOALL Loop

Iter 1 EI

Iter 1
EI

EI

Iter 1

I

I
I

I

E

E
E

E

Iter 2 EI

Iter 2
EI

EI

Iter 3 EI Iter 4 EIDefault:

2X ILP:

4X ILP:

Iter 1 DB

Iter 1

Iter 1

O Iter 2 DB O Iter 3 DB O Iter 4 DB O

DB O

DB O

DB O

DB O

DB O

DB O

Iter 2
DB O

DB O

Default:

2X ILP:

4X ILP:

Reschedule Factor=2

Reschedule Factor=4

Reschedule Factor=2

X registers

2X registers

4X registers

Slow Mono Kernel

Determined by
Profiler

Determined by
Profiler

X registers

2X registers

4X registers

Slow Mono Kernel

Determined by
Profiler

Determined by
Profiler

Reschedule Factor=4

O
C

S
EW

S
SI

S

Figure 7: Context-aware instruction rescheduling for softmax computation.

Otherwise, if there exists an output tensor element that
relies on multiple input tensor elements, the subgraph contains
contraction operations that combine several data elements
into one (one-on-many element-level data dependency). We
refer to such a subgraph as a contracted subgraph (CS). In
machine learning graphs, contractions are often represented
by reduce operations (e.g., reduce-sum) in the intermediate
representation (IR). If all the reduce ops of a subgraph are
the output operations, we call the subgraph an output-only
contracted subgraph (OCS). Note that a CS is either an OCS
or could be decomposed into OCS and EWS.

Basic Codegen Scheme. MonoNN will first identify all
the largest OCS through reverse traversal on the memory-
intensive subgraphs. The remaining subgraphs are then EWS,
which can be converted into DOALL loop [13] (i.e., loop with
no inter-iteration dependency) for full parallelization.

An OCS contains the contraction computation in reduce
op. The reduce ops in typical inference graphs are doing
contraction over elements residing in a continuous address in
memory (e.g., Reduce([x,y]) => [x,1]). For reduce ops on
GPU, the non-contracted dimension (e.g., x in the above exam-
ple) forms a DOALL loop without inter-iteration dependency.
Whereas the inner contracted dimension (e.g., y in the above
example) forms a DOACROSS loop [13] with inter-iteration
dependency due to contraction computation. Note that in
some cases, it might be beneficial to use a uniform schedule
for adjacent subgraphs with loop fusion if certain locality
constraints are met. For example, in Fig.7(a), an OCS fol-
lowed by an EWS can use a uniformed schedule by fusing the
outer loop, as the output of OCS can buffer on on-chip cache
for subsequent read from EWS. This technique, also known
as stitch fusion [42], is shown as dotted lines in Fig.7(a).
We call subgraphs that have independent schedule schedule-
independent subgraphs, SIS in short. Several subgraphs that
use a uniform schedule after loop fusion are regarded as one
SIS (e.g., Fig.7(b) shows an SIS after fusing an OCS and an
EWS). The schedule within an SIS is constrained by loop

structure and block locality, while the schedules among differ-
ent SIS are independent. Different SIS with its own schedule is
finally stitched together under MonoNN with global memory
buffering for intermediate transferring.

4.2.2 Context-Aware Instruction Rescheduling
We illustrate how to enable the hidden parallelism given an
SIS subgraph with the example in Fig.7(a). Note that the
contracted dimension of the reduce op is N, which maps to
the inner loop (i.e., parallel threads within a thread block),
The non-contracted dimension is M, which maps to the outer
loop (i.e., different thread blocks).

According to the property of OCS, it can be divided into
a sub-EWS followed by a reduce op. Thus, the inner loop
of OCS, which is a DOACROSS loop, can be converted to a
sub-DOALL loop (Fig.7(c)) followed by the corresponding
reduction. With the conversion above, the inner-loop of the
SIS is converted to the computation sequence of “sub-DOALL
loop⇒ reduction⇒ sub-DOALL loop” (Fig.7(b)-(c)).

The key insight of context-aware instruction rescheduling
is to rearrange the instructions according to the property of
the DOALL loop.

In Fig.7(c), the DOALL loop has no inter-iteration depen-
dencies, allowing MonoNN to explore the default schedule as
well as the ILP enhanced schedules (e.g., 2X ILP) by merging
instructions from different iterations into parallel instructions
within the same iteration to ensure stall-free instruction issue.
Theoretically, all schedules shown in Fig.7(c) achieve near-
maximum overall parallelization (T LP× ILP), with the de-
fault schedule yielding varied TLP for different operators, thus
necessitating numerous GPU kernels. In contrast, MonoNN
can identify a schedule that maximizes overall parallelization
and optimally fits TLP into a single monolithic kernel. The
optimization space for utilization abundant registers (Fig.7(d))
and corresponding performance in the monolithic kernel will
be explored, as determining the best scheduling factor in-
volves balancing ILP and resource usage. We will discuss

994 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Element-wise Affine &
Output

LN Body
Inputs

X
R B R

BE E E

Gamma

Beta

B

B

E

E Output

Streaming

Temporal

LD X LN Body LD Gamma LD Beta
Elewise
Affine

Pipe 1:

Pipe 2:

R

B

E

Reduce

Broadcast

Element-wise

Buffer in shared Memory

Pipeline dependency

Cache Last Evict Annotation

Pattern Aware Memory Access Caching:

Before Optimization:

E E

Prefetch X -> ST SMEM

LN
Body

LD
Gamma

LD
Beta

Elewise
Affine

LD
SMEM

Prev
Step

Next
Step

Figure 8: On-chip resource exploitation for layer norm.

how to find the optimal rescheduling factor for each SIS in
Sec.5

4.3 On-Chip Resource Exploitation
For an SIS memory-intensive subgraph, global memory ac-
cess often takes up a significant amount of execution time,
particularly when thread-level parallelism (TLP) is limited in
a monolithic context. Along with boosting parallelism through
instruction rescheduling as discussed in Sec.4.2.2, MonoNN
performs a comprehensive on-chip memory resource exploita-
tion to maximize the use of memory resources based on access
patterns.

We observe that there are two major memory access pat-
terns for an SIS subgraph: (1) Streaming: Each element of the
input tensor is accessed once in the computation graph. (2)
Temporal, Each data item in the input tensor is read multiple
times by its consumers, commonly due to broadcast opera-
tors in modern ML models. MonoNN implements a series of
memory access optimizations based on these patterns.

(I) Streaming Access Optimization. MonoNN leverages
the abundant shared memory resource allocated by the
compute-intensive computations in the monolithic kernel to
pipeline the streaming global memory access with other com-
putations. As mentioned, the outer loop of an SIS subgraph
is a DOALL loop, where different iterations are independent.
MonoNN organizes the computations between different itera-
tions of the outer loops to form a computation pipeline and a
memory copy pipeline. Particularly, during the computation
of each outer loop iteration, it will prefetch the streaming
accessed input data for the next iteration into the shared mem-
ory buffer. Fig.8 presents the input data access pipelining for
layer norm [15]. LN Body represents the main layer norm
computation and Element-wise affine represents the following
element-wise affine transformation parameterized by Gamma

and Beta. The memory access to input X is prefetched onto
shared memory in the computation pipeline, fully overlapping
the data fetching and computation. Note that the input X in
Fig.8 is consumed by multiple operators. If the shared mem-
ory is not enough for the data buffering, MonoNN will not
make a pipelined buffer X. Instead, MonoNN will buffer X on
the register file (or local memory if facing register spills), for
which the multiple consumers will reuse the data through the
faster register file rather than the global memory.

(II) Temporal Access Optimization. If the input data ac-
cess is temporal rather than streaming, MonoNN will annotate
cache hints to these memory operations to guide the cache
behavior to preserve the data on the cache as long as possible
(e.g., evict_last in NVIDIA GPU semantics). MonoNN will
annotate memory read as temporal access from the node with
a smaller tensor shape until an empirical value is reached to
accommodate as many tensors as possible and prevent cache
thrashing. As shown in Fig.8, Gamma and Beta have tem-
poral locality because they are connected to the subsequent
broadcast op. A load of Gamma and Beta will be annotated
with evict_last for longer cache occupation, improving the
temporal locality in SIS.

4.4 Global Thread Barrier Merging
As mentioned in Sec.4.2, there are cross thread block data
dependencies between different SIS subgraphs. MonoNN in-
serts global thread barrier (GTB) between SIS subgraphs
to ensure correctness. Note that GTBs are also required be-
tween compute-intensive operators and SIS subgraphs. Simi-
lar with [42], GTB in MonoNN is implemented in two stages:
one-block-wait-all and one-block-notify-all. Each block has
a flag in global memory (typically cached in GPU L2) to
represent whether the corresponding thread block has arrived.
The first thread block waits for all the remaining blocks to
report waiting, and then notifies them to proceed. Further-
more, the inner-kernel GTB is much shorter than the non-
computation overhead as the latter is composed of both kernel
launching and framework scheduling overheads. The over-
head measurement results of inner-kernel GTB [42] and kernel
launching [37] from the previous studies are aligned with our
observation that a typical kernel launching overhead is often
multiples of a GTB length, e.g., a single kernel launching with
framework scheduling is around 8∼ 10 microseconds which
is 4∼ 5× of a GTB length.

Longest-path based GTB merging. One GTB introduces
minimal synchronization overhead, but this can accumulate
when the number of GTBs is large. We have observed that
some SIS subgraphs do not exhibit producer-consumer or
topology dependencies. By clustering these independent SIS
subgraphs in topological order, MonoNN can eliminate the
need for GTBs between them. To address graph complexity,
we propose the longest-path based GTB merging approach
to find the optimal SIS clustering strategy. For example, in
Fig.9, the nodes (A-E) represent the SIS subgraphs, with GTBs

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 995

A

D

C

B
E

F
(0)

(1) (2)
(3)

(1) (4)

0 1 2 3 4

A
B
D

F C E

Final GTBEdge with GTB

Figure 9: Global thread barrier merging. The numbers above
nodes represent the longest distance from the source node to
the current node.

required between them (indicated by edges). MonoNN calcu-
lates the longest path to each node from the first node. Nodes
with the same longest path length (e.g., B and D in Fig.9) can
be clustered together for GTB merging. Traditional topology
ordering methods only order nodes and do not cluster them,
making them inadequate for guiding GTB merging.

4.5 Optimizing Compute-Intensive Operators
While the memory-intensive subgraphs are effectively opti-
mized to maximally leverage on-chip resources, the compute-
intensive operators in MonoNN directly adopt the existing
implementations from CUTLASS [1] as tunable basic build-
ing blocks: the tuning space of CUTLASS is included in the
tuning space for the monolithic kernel.

5 The MonoNN Compiler
This section details the design and implementation of an opti-
mizing compiler that automatically generates efficient mono-
lithic kernels using the techniques outlined in Sec.4. Unlike
previous works that focus on tuning single operators or sub-
graphs [18,42], MonoNN optimizes the entire graph, resulting
in a vast optimization space. This complexity makes finding
the optimal global configuration challenging. We explain how
we systematically abstract this extensive optimization space in
Sec.5.1 and how we reduce it to efficiently identify a suitable
global configuration in Sec.5.2.

5.1 Optimization Space Abstraction
First, we categorize the proposed optimizations into two types:
(1) Deterministic optimizations are always beneficial. Includ-
ing comprehensive on-chip resource exploitation (Sec.4.3)
and global thread barrier merging (Sec.4.4). (2) Tunable
optimizations: All other optimizations not included in the
deterministic category are considered tunable. We classify
the tunable factors of the monolithic kernel into three main
classes:

(I) Code generation schedule of each operator in a neu-
ral network. In the code generation process, element-wise
operators follow the code generation schedule of reduce op-
erators through input-inline. Thus, we only need to tune the

schedule of reduce operators and compute-intensive oper-
ators (CI Ops). Note that a grid-stride loop will be used to
iterate over its input elements if an element-wise operator
cannot find a reduce or CI Ops that it associates with. There
are two common schedules for row-major reduce operators.
One is to reduce a row of elements with all threads in a thread
block. The other one is to reduce a row with one warp. For
CI Ops, MonoNN will jointly consider all the tunable factors,
including tiling size, on-chip resource configuration, paral-
lelism configuration, hardware intrinsic (e.g., Tensor Core
instruction and CUDA async-copy), input prefetching, etc.

(II) Context-aware instruction rescheduling factor. ILP
is important for the SIS subgraphs to compensate for paral-
lelism loss under the constraint TLP in a monolithic kernel. A
too-small rescheduling factor may be insufficient to improve
the overall parallelism. A rescheduling factor that is too large
will use massive registers and may cause register spilling.
MonoNN explores a spectrum of the rescheduling factors for
each memory-intensive operator (MI Op). Specifically, for
each MI Op, MonoNN explores up to 32X rescheduling fac-
tors 5 via context-aware instruction rescheduling. In Sec.7.2.1,
we quantitatively evaluate how different ILP rescheduling fac-
tors impact MI Ops on performance.

(III) TLP and on-chip resource of the overall monolithic
kernel. TLP on GPUs is defined as the thread block size and
number of blocks for a GPU kernel, and on-chip resource
constraints are critical performance factors for efficient pro-
gram execution. For the monolithic kernel, these factors not
only affect the optimal execution configuration (e.g., tiling
size) for CI ops, but also impact the optimal rescheduling
for context-aware instruction rescheduling and optimal code
generation schedule for memory-intensive subgraphs (e.g.,
warp reduction vs block reduction). The candidate block sizes
for tuning are 128 and 256 for MonoNN, which are the main
block sizes used in the existing machine learning compil-
ers [2, 7] and CUTLASS for achieving good performance
for both CI Ops and MI Ops. Other block sizes may also be
trivially included to the optimization space. Our monolithic
kernel requires that all thread blocks be able to be scheduled
onto GPU concurrently in one wave to avoid deadlock in syn-
chronization. Thus, the total thread block number should be
no more than the max number of thread blocks that GPU can
tolerate. Specifically, the number of candidate TLP choices is
NT LP =

∣∣∣{128,256}
∣∣∣×Nblocks−per−sm = 2×Nblocks−per−sm,

where Nblocks−per−sm =
∣∣∣{1,2, ...,Nmax−blocks−per−sm}

∣∣∣ We
empirically choose Nmax−blocks−per−sm as 5 because too many
co-existing thread blocks will result in insufficient available
on-chip cache per block and further slow down CI Ops.

5The range of ILP is constrained by on-chip resources and thus is up to
32 for hardware we evaluated.

996 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2 Schedule-Independent Group Tuning
5.2.1 Extremely Large Tuning Space
The tuning complexity on the optimization space is up to:
Onaive = (SC)

NC×(SM×NILP)
NM×NT LP.

6 Indicates the code
generation schedules for CI ops ((SC)

NC), schedules and ILP
sizes for SIS ((SM ×NILP)

NM), and candidate TLP sizes for
the monolithic kernel (NT LP). All operators in an SIS share the
uniform schedule. If there exists a reduce operator in the SIS,
we only need to enumerate the schedule of one reduce opera-
tor; otherwise, it will adopt a grid-stride loop as the schedule.
A uniformed ILP will apply to all operators in the same SIS
since all operators in the same SIS share similar resource and
parallelism requirements. Unfortunately, this is an excessive
tuning space and will have a size of approximately 10500 for
a BERT-base model.

5.2.2 Tuning Space Compression
We make two important observations for the monolithic ker-
nel. (1) A monolithic kernel is separated into a set of SISs and
CI Ops by GTBs. The code generation schedules for differ-
ent subgraphs are not interleaved. We call an SIS or a CI Op
as a schedule-independent group (SIG). (2) The connection
between two schedule-independent groups is the TLP and
on-chip resource allocation. Meanwhile, the overall kernel’s
TLP and on-chip resource allocation are fixed throughout
the monolithic kernel. According to the observations above,
the code generation schedule of different SIGs can be safely
tuned individually without missing the optimal solution.

Based on the above observations, we propose schedule-
independent group tuning to compress the tuning space sig-
nificantly. Different SIGs are tuned independently for each
candidate TLP setting. Particularly, MonoNN concatenate the
best-tuned configurations of all the SIGs to get the overall best
configuration. Finally, we chose the TLP setting that performs
the best and all its associated configurations.

For a schedule-independent group that is a CI Op, we enu-
merate SC code generation schedules. There are NC such
groups, and the overall complexity is NC × SC under each
overall TLP configuration. For a schedule-independent group
that is an SIS subgraph, we enumerate the possible code gen-
eration schedules and overall ILP sizes. There are NM such
groups, and the overall complexity is NM×SM×NILP under
each overall TLP configuration. As a result, the shrunken
tuning complexity of our monolithic kernel is up to:

Oopt = (NC×SC +NM×SM×NILP)×NT LP.

It is worth noting that MonoNN will check the SIG hash
and reuse the tuning result if an identical SIG has been tuned
previously. This will prevent duplicated tuning effort under
repetitive neural network layers.

6NC (or NM): number of CI ops (or SIS). SC (or SM): possible schedules
of CI ops (or SIS). NILP (or NT LP): possible ILP (or TLP) sizes.

Algorithm 1 Monolithic Kernel Tuning
1: procedure GETTUNINGSPACETLP
2: Cblock−size←{128,256}
3: Cblocks−per−sm←{1, ...,Nmax−blocks−per−sm}
4: return Cblock−size X Cblocks−per−sm

5: procedure OPTIMIZEMISIS(SIS, TLP)
6: CandidateILPFactors←{1,2,3, ...,32}
7: BestSolution,BestTime← NULL,∞
8: for ILP ∈CandidateILPFactors do
9: S,Time← Pro f ileAndOptimize(SIS,T LP, ILP)

10: if Time < BestTime then
11: BestSolution,BestTime← S,Time
12: return BestSolution,BestTime
13: procedure OPTIMIZEFORTLP(TLP)
14: Solution,TotalTime←{},0
15: for SIG ∈ GetAllSIG() do
16: if IsCIOp(SIG) then
17: S,Time← Pro f ileAndOptimize(SIG,T LP)
18: else ▷ Is MI SIS
19: S,Time← OptimizeMiSIS(SIG,T LP)
20: Solution← Solution∪{S}
21: TotalTime← TotalTime+Time
22: return Solution,TotalTime
23: procedure MONONNTUNE
24: BestSolution,BestTime← NULL,∞
25: for T LP ∈ GetTuningSpaceT LP() do
26: S,Time← OptimizeForT LP(T LP)
27: if Time < BestTime then
28: BestSolution,BestTime← S,Time
29: return BestSolution,BestTime

Algo.1 details the tuning procedure in MonoNN begins
with sampling MonoNNTune in line 25. MonoNN takes
Cartesian product between candidate block size Cblock−size
and co-existing blocks per SM Cblocks−per−sm (line 4). The
optimal solution under each TLP will be tuned independently
(line 26). MonoNN will optimize every SIG in the neural
network (line 15). For memory-intensive subgraphs, the best
solution across all rescheduling factors will be selected as the
final solution of the current subgraph (line 10-12). MonoNN
iterates over the solution under each distinct TLP and chooses
the one with the shortest duration as the final solution (line 26-
29).

5.3 Implementation
We implement MonoNN with 64k lines of C++ code on top
of XLA compiler [2] and integrate it into TensorFlow [12]
framework as a drop-in replacement to the backend execution
engine. This allows MonoNN to accelerate existing Tensor-
Flow models without requiring any code changes. Addition-
ally, MonoNN can compile a neural network into a standalone
assembly file that can be directly executed, potentially offer-
ing better performance by eliminating the runtime overhead
from the deep learning framework. In Sec.7, we only report
the performance number from the first mode for a fair com-
parison across frameworks. Unlike AStitch [42], MonoNN
does not support cross-block reduction. We are not aware
of any performance degradation on evaluated models as the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 997

reduction dimension for these popular models are all small.

6 Scope, Impact, and Limitations

The current optimization scope of MonoNN mainly focuses
on general static DNNs where different layers have similar
computational sizes. For example, MonoNN effectively sup-
ports various popular Transformer models without dynamic
control flows, including Transformer encoder models such as
BERT, encoder-decoder models such as T5, and every step of
the decoder models such as GPT-like models. We compare the
performance of different fusion granularity in Sec.7.3, rang-
ing from basic element-wise fusion, stitch fusion, layer-wise
monolithic kernel (i.e., one monolithic kernel per layer) to a
single monolithic kernel of the entire model.

MonoNN established a new monolithic optimization space
for common static DNN inference scenarios by resolving the
long-existing global optimization challenge within a single
kernel, addressing the resource incompatibility problem of
various operators. MonoNN introduce key contributions such
as Context-Aware Instruction Rescheduling (Sec.4.2.2), On-
Chip Resource Exploitation (Sec.4.3), and Global Thread
Barrier Merging (Sec.4.4). Moreover, MonoNN is designed to
be forward-looking, performing even more effectively for the
upcoming GPU architectures. The increased computing power
of future GPUs will likely exacerbate issues related to off-
chip memory access and CPU-GPU context switch overhead.
Moreover, as supported by [6], distributed shared memory
access can enable more flexible and efficient intermediate
data buffering for large-scale operator fusion.

Despite the contribution of MonoNN, several potential lim-
itations should be noted. (1) MonoNN mainly addresses com-
mon static DNN inference scenarios rather than the models
with dynamic control flows [22, 36]. However, users can still
optimize the subgraphs separated by control flow operators
using MonoNN techniques. (2) MonoNN focuses on DNN
inference scenarios that fit within a single GPU, covering a
wide range of real-world inference service cases. Extending
MonoNN to incorporate collective communication primitives
is beyond the scope of this work, but users can still optimize
the subgraphs separated by the communication operators us-
ing MonoNN. (3) MonoNN may be less effective for DNNs
with varied tensor sizes in different layers due to the imbal-
anced workloads in the single monolithic kernel. While our
experiments did not show significant performance regression,
this potential limitation in the monolithic kernel should be
highlighted.

7 Evaluation
Model specifications: We use a set of representative machine
learning applications as our evaluation workloads, including
BERT-Base, BERT-Large [19], Transformer T5-Small, T5-
Base [30] for natural language processing, ViT [20] for image

recognition (with both Convolution and Transformer com-
ponents), CLIP [29] for computer vision and text, OPT [38]
for text generation (OPT-125M version). All the models are
publicly available from Huggingface [34]. For all BERT-like
and Transformer-like models, we used sequence length equal
to 128 unless specified elsewhere.

Software specifications: We compare MonoNN against
TensorFlow [12] (v2.7), XLA [2] (v2.7), TensorRT v8.27

(via TF-TRT integration [7]), TVM (commit f6f9056) [18],
AStitch [42], Rammer [24], PyTorch [28] (v1.12.1), and CUD-
AGraph [9] (via PyTorch integration). We use CUDA v11.6
and cuDNN 8 for all the experiments8. We enable Tensor
Cores for all the frameworks we evaluated except in Sec.7.5
cause Rammer [24] only supports SIMT cores.

Hardware Platforms: A10 server: NVIDIA A10 GPU
(Ampere), and two Intel(R) Xeon(R) Platinum 8369B CPUs.
T4 server: NVIDIA T4 GPU (Turing), and two Intel(R)
Xeon(R) Platinum 8163 CPUs. A100 server: NVIDIA A100
80GB SXM (Ampere), and two Intel(R) Xeon(R) Platinum
8369B CPUs.

7.1 End-to-End Performance Comparison
7.1.1 Overall Results
Fig.10 shows the end-to-end performance speedup on
NVIDIA A10, T4, and A100 GPU for all experiments with
three batch size variations. Geo Mean refers to the geometric
mean across all models. All the execution time is normalized
against the best optimizer in the group. TVM failed to opti-
mize OPT, ViT, and CLIP due to incomplete operator support.
PyTorch-CUDAGraph failed to optimize OPT, CLIP, and T5
for unsupported operations in the graph-capturing phase.

As demonstrated in Fig.10, on A10 GPU, MonoNN achieve
6.9×, 1.4×, 1.6×, 1.8×, 6.6×, and 2× average speedup over
Tensorflow, XLA, TVM, TensorRT, PyTorch, and PyTorch-
CUDA Graph on batch size 1, respectively. In addition, for
batch size 16, and 32, MonoNN achieve on average 1.88×,
and 1.80× speedup over baselines. On NVIDIA T4, MonoNN
achieve 6.5×, 1.4×, 2.3×, 2.8×, 5.8×, 2.3×, and 1.8× av-
erage speedup over Tensorflow, XLA, TVM, TensorRT, Py-
Torch, PyTorch-CUDA Graph, and AStitch on batch size 1, re-
spectively. In addition, for batch size is 16, MonoNN achieves
on average 1.91× speedup over all baselines. We also have
comprehensively tested MonoNN on A100 as detailed in
Fig.10c.

Given the diverse set of baselines we compare against,
the extent of performance improvements can vary. MonoNN
consistently achieves the best performance across all base-
lines, with significant improvements observed for all test-
ing batch sizes. It is important to note that reduced per-
formance gains with larger batch sizes are anticipated, as

7TensorRT 8 is the latest version at the time of submitting the paper (Dec.
2022), with much performance improvement compared to TensorRT 7.

8AStitch is using its released artifact (CUDA 10.2 and cuDNN 7).

998 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean
0.2

0.6

1.0 Batch size = 1
TF XLA TVM TRT PT PT-CG MonoNN

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean
0.2

0.6

1.0 Batch size = 16

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean
0.2

0.6

1.0 Batch size = 32N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(a) NVIDIA A10

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean

0.2

0.6

1.0 Batch size = 1

TF XLA TVM TRT PT PT-CG AStitch MonoNN

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean

0.2

0.6

1.0 Batch size = 16

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(b) NVIDIA T4

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean
0.2

0.6

1.0 Batch size = 1
TF XLA TVM TRT PT PT-CG MonoNN

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean
0.2

0.6

1.0 Batch size = 16

OPT 125M BERT-B BERT-L ViT CLIP T5-Small T5-Base Geo Mean
0.2

0.6

1.0 Batch size = 32N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(c) NVIDIA A100
Figure 10: MonoNN End-to-End speedup (higher is better).

larger batches generally lead to better device utilization, leav-
ing less room for performance enhancements. For exam-
ple, XLA/TensorRT/MonoNN show on average 4.9×->2.6×-
>2.3× / 3.8×->2.3×->2.0× / 6.9×->3.4×->3.0× perfor-
mance gain over the TF baseline when expanding the batch
size from 1 -> 16 -> 32 on A10 respectively.

We test CUDA Graph via Pytorch integration. Despite the
failure in some of the models in our benchmark, CUDA Graph
achieves on average 2.6×, 0.95×, 0.98× speed up over Py-
Torch when batch size is 1,16,32 on A10. Obviously, the
performance gain of the CUDA Graph diminishes drastically
(even with no performance gain) when the batch size is larger
than one. The average speedup is far less than the achieved
performance speedup of MonoNN. Specifically, MonoNN
outperforms PyTorch-CUDA Graph by an average of 2×

XLA TRT MonoNN

2 4 6
0.4

0.8

1.2

1.6

11
1

2
2

2 4
4

4
6

6

6
BERT-Base

3 6 9
0.3

0.5

0.7

0.9

1
1

1
2

2

2 4
4

4
6

6

6

ViT

3 6 9
0.2

0.6

1.0

11
1 22

2 4
4

4
6

6

6
CLIP

5 8 11
0.2

0.4

0.6

0.8

11
1

2
2

2 4
4

4
6 6

6

T5-Base

Latency (ms)

 T

hr
ou

gh
pu

t
(1

0^
3

S
am

pl
e/

s)

Figure 11: MPS Performance.

(batchsize=1) and continues to outperform it when batchsize
is larger than 1. We attribute the reason as follows. On the
one hand, MonoNN can perform various optimizations in
the monolithic optimization space that CUDA Graph cannot,
e.g., whole graph-level optimizations, instruction reschedul-
ing, on-chip resource exploitation, and GTB merging. On the
other hand, as pointed out by previous literature [37], a new
GPU kernel has several types of overhead (e.g., kernel launch-
ing, kernel initialization) but CUDA Graph can only optimize
kernel launching.

XLA achieves the best average speedup among our base-
lines. But XLA can only explore register-level data buffer-
ing rather than multi-dimensional optimization techniques
in MonoNN. We only run AStitch [42] experiment on T4
GPU (with CUDA 10.2) because the artifact released does
not support newer NVIDIA A10 architecture.

In addition, we evaluate MonoNN and the baselines on A10
using longer input for the BERT model. We use an input se-
quence length equal to 512, which is the maximum sequence
length supported by the model’s pre-trained positional embed-
ding. As illustrated in Tab.1, MonoNN achieves on average
1.94×, 1.52×, and, 1.48× speedup over baselines when batch
size is 1/16/32 respectively.

TF XLA TRT PT PT-CG MonoNN

BS=1 0.27 0.90 0.44 0.39 0.57 1
BS=16 0.40 0.87 0.75 0.63 0.62 1
BS=32 0.42 0.90 0.79 0.63 0.63 1

Table 1: Normalized performance.

Among the evaluated models, the OPT-125M model has
the smallest computation shape; only a single output token is
generated at each step. This results in severe non-computation
overhead, making MonoNN especially advantageous.

7.1.2 Impact on Throughput with MPS
This section is to demonstrate that MonoNN’s optimiza-
tions can perform well for GPU-shared scenarios for higher
throughput. In the real-world inference scenario, a common
approach is to share a single GPU with multiple inference
tasks to improve inference throughput and hardware utiliza-
tion. NVIDIA Multi-Process Service (MPS) [10] is one of the
most widely adopted solutions for GPU sharing. We test our
solution with MPS for BERT-Base, ViT, CLIP, and T5-Base
on A10 and plot the latency-throughput curve in Fig.11. The

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 999

BERT-Base ViT T5-Base Geo Mean0.5
0.7

1.0 Batch size = 1
MonoNN-Base MonoNN-O1 MonoNN-O2 MonoNN-O3

BERT-Base ViT T5-Base Geo Mean0.5
0.7

1.0 Batch size = 16

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Figure 12: Ablation study on NVIDIA A10.

numbers on the line indicate how many instances are used in
MPS. The batch size is one in this experiment. MonoNN con-
sistently outperforms baselines, achieving 1.5×−2× QPS
throughput under the same latency constraint. It demonstrates
that a monolithic kernel is capable of delivering meaningful
speedup in GPU-shared inference. In practice, we divide TLP
for each instance by the number of instances co-existing in
MPS to ensure all instances can run concurrently on a single
GPU.

7.1.3 Ablation Study
Fig.12 dissects the main optimizations in MonoNN. We build
MonoNN-Base, a lightweight monolithic kernel generator that
has all the optimization techniques of MonoNN except for
the three: context-aware instruction rescheduling, comprehen-
sive on-chip resource exploitation and global barrier merging.
Note that MonoNN-Base is different from the baselines in
Fig.10. MonoNN-Base is already a strong baseline that has
many basic optimization techniques. It is a single monolithic
kernel with minimal non-computation overhead, achieving
better performance than TensorFlow and on par with XLA.
We then build MonoNN-O1-O3 by gradually applying the
above optimizations one by one in order. MonoNN-O3 is the
full MonoNN. We observe 5%, 6%, and 12% speedup for
O1, O2, and O3 optimization on batch size 1, and 35%, 15%,
and 3% speedup on batch size 16. Context-aware instruction
rescheduling shows much more performance gain for batch
size 16 because larger tensor shapes need higher parallelism,
thus requiring ILP compensation more. In addition, we ob-
serve instruction rescheduling does not improve performance
on OPT-125M model as the text generation model only pro-
duces a single token in each inference and a small tensor shape
does not need a larger rescheduling factor. Comprehensive
on-chip resource exploitation also shows higher performance
gain on batch size 16 as larger tensors need more compre-
hensive solutions to accelerate off-chip memory access. GTB
Merging shows larger performance gain when batch size is
one because synchronization overhead is invariant to batch
size and thus will take a larger portion when kernel duration
is short.

7.2 MonoNN Optimization Breakdown
In this section, we dissect our optimization techniques pro-
posed in Sec.4 and present a deep-dive into the solution gen-
erated by MonoNN with both conceptual and quantitative

Multi-Head Attention LN 1 MLP 1 GELU MLP 2
Single BERT Layer

CI Op 1
SIS 1
IRF:4

CI Op 2 CI Op 3
SIS 3

IRF:16
CI Op 4

SIS 4
IRF:24

CI Op 5
SIS 5

IRF:26
CI Op 6

SIS 6
IRF:12

255 Registers/Thread
TLP: 114 Thread Blocks * 128 Threads Per Block; SMEM:49KB

LN 2

SIS 2
IRF:4

Figure 13: Identified SIS and OCS on a BERT layer, including
TLP and on-chip resource usage of the monolithic kernel and
instruction rescheduling factor (IRF) for each SIS.

Latency
of Warps Stall on Off-chip Memory Access (Long Scoreboard)

Register/Thread

1 2 4 6 8 10 12 14 16 18 20 22 24
Rescheduling Factor

75

100

125

150

175

La
te

nc
y

(u
s)

0

2

4

6

of

 W
ar

p
Iss

ue
 S

ta
ll

on
 L

on
g

Sc
or

eb
oa

rd

50

100

150

200

250

300

Re
gi

st
er

/T
hr

ea
d

(a) Instruction Reschedule in Layer Norm Operator (SIS 6 in Fig.13).

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Rescheduling Factor

50

100

150

200

250

La
te

nc
y

(u
s)

0

5

10

of

 W
ar

p
Iss

ue
 S

ta
ll

on
 L

on
g

Sc
or

eb
oa

rd

0

20

40

60

80

100

Re
gi

st
er

/T
hr

ea
d

(b) Instruction Reschedule in GELU Operator (SIS 5 in Fig.13).
Figure 14: Context-aware instruction rescheduling analysis.

analysis to help understand optimizations in monolithic ker-
nel better. Fig.13 shows the identified CI Ops and SIS in a
BERT-Base model. We present a detailed analysis when the
inference batch size is 16 on NVIDIA A10.

7.2.1 Context-Aware Instruction Rescheduling Analysis
Context-Aware Instruction Rescheduling (Sec.4.2.2) can in-
crease ILP with more register usage. We show the reschedul-
ing analysis of two subgraphs in Fig.14. As demonstrated in
Fig.14a, when the rescheduling factor is too low, the average
number of warps per SM per cycle that stall on off-chip mem-
ory access is high due to the low parallelism (both TLP and
ILP), resulting in high inference latency. On the other hand, a
too-high factor will cause register pressure and even register
spilling. Slight register pressure often does not indicate degra-
dation in performance, but register spilling often results in
drastic performance degradation. We observe register pressure
when the rescheduling factor is 10 and register spilling when
the rescheduling factor is larger than 22. The best factor for
SIS6 is 12. SIS5 in Fig.14b has less register usage compared
to SIS6, for which the best rescheduling factor is 26.

7.2.2 On-chip Resource Exploitation Analysis
Comprehensive On-chip Resource Exploitation (Sec.4.3) can
further exploit the on-chip cache and shared memory based
on the data access pattern of the subgraph. Fig.15a shows
performance improvement after applying this optimization

1000 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

SIS1 SIS2 SIS3 SIS4 SIS5 SIS6
0.6
0.8
1.0
1.2
1.4

R
el

at
iv

e
La

te
nc

y w/o Exp. w/ Exp.

(a) SIS latency after Exploitation.

CI Op1
CI Op2

CI Op3
CI Op4

CI Op5
CI Op6

0.0
0.4
0.8
1.2

R
el

at
iv

e
La

te
nc

y MonoNN cuBLAS

(b) CI Ops latency.
Figure 15: Operator latency breakdown.

for subgraphs corresponds to Fig.13, achieving 1.3× speedup
on average. Note that this is additional performance gain over
Context-Aware Instruction Rescheduling.

7.2.3 Performance of Compute Intensive Operators
We also detailed the performance of CI Ops in the monolithic
kernel. All CI Ops need to follow the same TLP setting but the
tensor shape for each CI Op could be different. Thus, handling
different tensor shapes with a unified TLP setting is critical.
MonoNN achieves this by leveraging intra-thread block tun-
ing choices from CUTLASS. Through extensive evaluation,
we found that intra-block tuning can generate satisfactory
solutions for CI Ops. We illustrate the performance of CI Ops
in monolithic kernel in Fig.15b. With the highly-tuned open-
source vendor code (i.e., CUTLASS), all operators achieve
on-par performance with the cuBLAS. Surprisingly, in some
cases, the CI Op found by MonoNN is slightly better than
cuBLAS. The reason we judiciously suspect is MonoNN per-
forms an exhaustive search over all possible solutions whereas
cuBLAS uses heuristics.

7.2.4 Global Thread Barrier Merging Analysis
GTB is necessary for a monolithic kernel to ensure correct-
ness. But each GTB involves a small overhead, approximately
2us based on our evaluation. Thus we need to minimize such
overhead with longest-path based GTB merging (Sec.4.4). We
compare GTB number before and after merging optimization.
We observe 516, 658, 319, 710, and 366 GTBs in BERT-Base,
CLIP, OPT-125M, T5-Base, and ViT model respectively. The
GTB number reduced to 146, 185, 185, 315, and 184 respec-
tively after GTB merging.

7.2.5 Dissecting Non-computation Overhead

Bert-Base ViT T5-Base OPT-2

Framework 0.41 0.57 0.44 0.61
Kernel Launch 0.71 0.51 0.72 1.74

Table 2: Context switch overhead breakdown (in ms).

Framework scheduling overhead and kernel launching over-
head are two major sources of non-computation overhead.
Tab.2 shows the separated framework scheduling and kernel
launching overhead after optimization with XLA. It shows
that the kernel launch overhead accounts for 61.7% of the
overhead on average, larger than that of framework overhead.

To measure the two kinds of overhead, we build two XLA
variants. The first variant XLA-framework executes all frame-
work scheduling logic as XLA, except it does not launch GPU
kernel but returns immediately for each operator. Therefore,
the inference latency of XLA-framework is pure framework
overhead. The second variant XLA-framework-and-kernel has
the same functionality as XLA, except that it launches empty
GPU kernels (GPU kernels that do nothing) rather than the
original kernels. The inference latency of XLA-framework-
and-kernel is the summation of framework overhead and ker-
nel launch overhead.

7.3 Fusion Granularity Analysis

EleWise Stitch Layer Layer+CUDAGraph Monolithic

OPT 0.68 0.73 0.93 0.93 1
MultiModal 0.49 0.61 1.10 1.10 1

Table 3: Relative performance at each fusion granularity

We further analyze how kernel fusion granularity impacts
inference performance on the models we evaluated to have
a better understanding of the optimization space we pro-
posed. Specifically, we control the fusion scope of MonoNN
to generate code at different fusion granularity. From small to
large, 1) EleWise: Element-wise fusion [2, 18]. 2) Exhaus-
tive memory-intensive fusion (Stitch): perform exhaustive
fusion optimization on memory-intensive subgraphs using
shared memory and global memory. This scope is similar to
TensorRT [11] and AStitch [42]. 3) Layer: each layer of the
neural network will be generated into a kernel with mono-
lithic optimization. Note that from this scope, efficient code
generation is unrealistic without the techniques proposed in
this work. 4) Layer+CUDAGraph additionally apply CUDA
Graph to the generated kernels. 5) Monolithic: the entire neu-
ral network is fused into a single kernel.

We choose OPT-125M and a customized multimodal model
and benchmark them on A10 with a batch size equal to one.
The multimodal model contains a transformer-based text en-
coder and a CNN+transformer-based image encoder. The
setting with the best performance is highlighted in bold. We
observe for a regular model like OPT with repetitive layers,
monolithic kernel trend to achieve the best performance be-
cause all the optimization choices are essentially the same
across layers. But for the multimodal model with complex
structure, we observe the text encoder and image encoder
trend to explore different optimization spaces due to diver-
gence in computation tensor shape.

7.4 MonoNN Tuning Speed

MonoNN uses a grid search tuner with caching to tune the
entire network. The modern neural network usually has many

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1001

Bert-Base Bert-Large T5-Small T5-Base

MonoNN 22 70 17 68
TVM 172 220 51 116

Table 4: MonoNN end-to-end compilation time in minutes.

repetitious layers so that MonoNN avoids tuning them redun-
dantly by caching the result from previous layers. We further
apply many engineering-level optimizations to speed up tun-
ing, which will not be highlighted in this paper. To this end,
we found that MonoNN tuner can provide satisfactory tuning
speed. We detailed quantitative numbers in Tab.4 collected
from A10 GPU.

7.5 Comparison with Rammer
We compare MonoNN with Rammer [24] on BERT-Large in-
ference. Rammer failed in optimizing all Huggingface public
models in Fig.10 due to unsupported operators (e.g., Ein-
sum, BroadcastTo). The only common inference model that
we can find is the BERT-Large model from Rammer’s of-
ficial repository using fixed batch size 1. Thus, we cannot
test other batch sizes on Rammer. In addition, Rammer does
not support Tensor Cores. We thus compare with Rammer
on NVIDIA T4 GPU after disabling Tensor Core usage for
MonoNN. MonoNN shows 1.28× speedup over Rammer on
BERT-Large model when using batch size equal to one and
sequence length equal to 512.

8 Related Work

Most of the popular ML compilers focus on either single-
operator or subgraph-level kernel generation. [16, 18, 26, 31,
32, 39, 41, 43] focus on compute-intensive operators opti-
mization, with basic fusion support for memory-intensive
ops, whereas [27, 41, 42] explore the stitch optimization of
memory-intensive subgraphs. From graph level, [23, 33] ex-
plore graph transformation optimizations to accelerate neural
network execution, which is orthogonal to our work.

Notably, holistic optimizations for machine learning work-
loads have received increased attention in recent years. Ver-
saPipe [40] utilizes persistent-thread technique [14, 17] to
execute a computation graph in a pipelined manner, in which
the large kernel is spitted into several small kernels to avoid
resource incompatibility problem. This approach is not suf-
ficient to support computation graphs with massive opera-
tors, like machine learning graphs. Rammer [24] utilizes the
persistent-thread technique to support large scope fusion, in
which the task re-slicing and scheduling help to fill up ex-
ecution units. Rammer does not touch the incompatibility
problem and cannot support the monolithic optimization of
an entire neural network efficiently. For example, the demoed
BERT model of Rammer consists of 734 kernels on GPU. The
persistent thread scheduling of VersaPipe and Rammer also

introduces extra scheduling overhead, while MonoNN applies
effective static scheduling to avoid such overhead. Moreover,
neither VersaPipe nor Rammer explores the optimizations
of on-chip resource exploitation and GTB merging like in
MonoNN. BOLT [35] can fuse GEMM and its following op-
erations into single kernels under restricted locality constrain.
It cannot generate the monolithic kernel due to the incompati-
bility problem. Müller et al. [25] manually fuse all operators
of a tiny MLP, small enough to fit on-chip, into a single GPU
kernel for accelerated execution. In contrast, MonoNN ex-
plores a general approach for automatically high-performance
code generation for common-sized models. There are ad hoc
solutions to speed up single operator (e.g., LayerNorm) with
instruction level parallelism on GPU [21]. None of the above
work tackles the challenge of monolithic kernel generation.

9 Conclusion

We reveal that the kernel-by-kernel execution scheme is
no longer effective in fully utilizing modern GPUs for
various machine learning workloads, causing notable non-
computation overhead and off-chip memory traffic. We pro-
pose the monolithic kernel execution scheme to tackle these
problems, providing a vast new optimization space. We pro-
pose context-aware instruction rescheduling and compre-
hensive on-chip resource exploitation techniques to cope
with the incompatibility problem between compute-intensive
and memory-intensive operators. We systematically abstract
the monolithic optimization space and propose schedule-
independent group tuning approach to compress the extremely
large tuning space. We develop a compiler integrating the op-
timizations automatically. Extensive evaluation on a set of
inference tasks demonstrates that MonoNN outperforms state-
of-the-art optimizers with on average 2.01× speedup.

ACKNOWLEDGMENT

We appreciate the guidance from the OSDI reviewers and
our shepherd during the review and revision process. We
also extend our gratitude to Minmin Sun, Feiwen Zhu, Kai
Zhu, Zaifeng Pan, Bohua Chen, and Wenyi Zhao at Alibaba
Group for their valuable suggestions. This research is funded
by Alibaba Group through the Alibaba Innovative Research
Program. Donglin Zhuang and Haojun Xia are affiliated with
the School of Computer Science at the University of Sydney,
Australia, and conducted this work during their internship at
Alibaba. Shuaiwen Leon Song is the corresponding author of
this paper.

References

[1] Cutlass: Cuda templates for linear algebra subroutines.
https://github.com/nvidia/cutlass.

1002 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/nvidia/cutlass

[2] Xla: Optimizing compiler for machine learning. https:
//www.tensorflow.org/xla.

[3] Nvidia tesla v100 gpu architecture. https:
//images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-
whitepaper.pdf, 2017.

[4] Nvidia turing gpu architecture. https:
//images.nvidia.cn/aem-dam/en-zz/Solutions/
design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-
Whitepaper.pdf, 2018.

[5] Nvidia ampere ga102 gpu architecture. https:
//www.nvidia.com/content/PDF/nvidia-ampere-
ga-102-gpu-architecture-whitepaper-v2.pdf,
2021.

[6] Nvidia hopper architecture in-depth. https:
//developer.nvidia.com/blog/nvidia-hopper-
architecture-in-depth/, 2022.

[7] Accelerating inference in tf-trt. https:
//docs.nvidia.com/deeplearning/frameworks/
tf-trt-user-guide/index.html, Cited Dec 2022.

[8] Amd cdna architecture. https://www.amd.com/
system/files/documents/amd-cdna-
whitepaper.pdf, Cited Dec 2022.

[9] Getting started with cuda graphs. https://
developer.nvidia.com/blog/cuda-graphs/, Cited
Dec 2022.

[10] Multi-process service (mps). https://
docs.nvidia.com/deploy/mps/index.html, Cited
Dec 2022.

[11] Tensorrt. https://developer.nvidia.com/
tensorrt, Cited Dec 2022.

[12] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implemen-
tation ({OSDI} 16), pages 265–283, 2016.

[13] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Addison-
Wesley series in computer science / World student series
edition. Addison-Wesley, 1986.

[14] Timo Aila and Samuli Laine. Understanding the effi-
ciency of ray traversal on gpus. In Proceedings of the
conference on high performance graphics 2009, pages
145–149, 2009.

[15] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. Layer normalization. CoRR, abs/1607.06450, 2016.

[16] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 193–205. IEEE, 2019.

[17] Michael Boyer, David Tarjan, Scott T Acton, and Kevin
Skadron. Accelerating leukocyte tracking using cuda:
A case study in leveraging manycore coprocessors. In
2009 IEEE international symposium on parallel & dis-
tributed processing, pages 1–12. IEEE, 2009.

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: an automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ICLR,
2021.

[21] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 389–402, 2021.

[22] Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, and
Todd C. Mowry. Cortex: A compiler for recursive deep
learning models. In Alex Smola, Alex Dimakis, and
Ion Stoica, editors, Proceedings of Machine Learning
and Systems 2021, MLSys 2021, virtual, April 5-9, 2021.
mlsys.org, 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1003

https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[23] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In Tim Brecht and Carey
Williamson, editors, Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019, pages
47–62. ACM, 2019.

[24] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881–897, 2020.

[25] Thomas Müller, Fabrice Rousselle, Jan Novák, and
Alexander Keller. Real-time neural radiance caching
for path tracing. ACM Trans. Graph., 40(4):36:1–36:16,
2021.

[26] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: accelerating deep neural net-
works execution with advanced operator fusion. In
Stephen N. Freund and Eran Yahav, editors, PLDI ’21:
42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, Vir-
tual Event, Canada, June 20-25, 2021, pages 883–898.
ACM, 2021.

[27] Zaifeng Pan, Zhen Zheng, Feng Zhang, Ruofan Wu, Hao
Liang, Dalin Wang, Xiafei Qiu, Junjie Bai, Wei Lin, and
Xiaoyong Du. Recom: A compiler approach to accel-
erating recommendation model inference with massive
embedding columns. In Tor M. Aamodt, Michael M.
Swift, and Natalie D. Enright Jerger, editors, Proceed-
ings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 4, ASPLOS 2023, Vancouver,
BC, Canada, March 25-29, 2023, pages 268–286. ACM,
2023.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 8024–8035, 2019.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable vi-
sual models from natural language supervision. In Ma-
rina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pages
8748–8763. PMLR, 2021.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020.

[31] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. Acm Sigplan Notices, 48(6):519–
530, 2013.

[32] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

[33] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: optimizing tensor
programs with partially equivalent transformations and
automated corrections. In Angela Demke Brown and
Jay R. Lorch, editors, 15th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2021,
July 14-16, 2021, pages 37–54. USENIX Association,
2021.

[34] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, On-
line, October 2020. Association for Computational Lin-
guistics.

[35] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen,
Ang Chen, and Yibo Zhu. Bolt: Bridging the gap be-

1004 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tween auto-tuners and hardware-native performance.
arXiv preprint arXiv:2110.15238, 2021.

[36] Chen Zhang, Lingxiao Ma, Jilong Xue, Yining Shi, Zim-
ing Miao, Fan Yang, Jidong Zhai, Zhi Yang, and Mao
Yang. Cocktailer: Analyzing and optimizing dynamic
control flow in deep learning. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2023, Boston, MA, USA, July 10-12, 2023, pages
681–699. USENIX Association, 2023.

[37] Lingqi Zhang, Mohamed Wahib, and Satoshi Matsuoka.
Understanding the overheads of launching cuda kernels.
ICPP19, 2019.

[38] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. OPT: open pre-trained trans-
former language models. CoRR, abs/2205.01068, 2022.

[39] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 863–879, 2020.

[40] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen,
Youngmin Yi, and Wenguang Chen. Versapipe: a versa-
tile programming framework for pipelined computing
on gpu. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 587–
599. IEEE, 2017.

[41] Zhen Zheng, Zaifeng Pan, Dalin Wang, Kai Zhu, Wenyi
Zhao, Tianyou Guo, Xiafei Qiu, Minmin Sun, Junjie Bai,
Feng Zhang, Xiaoyong Du, Jidong Zhai, and Wei Lin.
Bladedisc: Optimizing dynamic shape machine learning
workloads via compiler approach. Proc. ACM Manag.
Data, 1(3):206:1–206:29, 2023.

[42] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, Shuaiwen Leon Song, and
Wei Lin. Astitch: enabling a new multi-dimensional
optimization space for memory-intensive ml training
and inference on modern simt architectures. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 359–373, 2022.

[43] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,

Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong
Zhou, Asaf Cidon, and Gennady Pekhimenko. ROLLER:
fast and efficient tensor compilation for deep learning. In
Marcos K. Aguilera and Hakim Weatherspoon, editors,
16th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2022, Carlsbad, CA, USA,
July 11-13, 2022, pages 233–248. USENIX Association,
2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1005

	Introduction
	Background and Motivation
	Monolithic Optimization Space
	Main Challenges of Enabling A Monolithic Kernel Optimization Space
	A High-level Glance of MonoNN

	System Design
	Overview of MonoNN
	Exploiting Hidden Parallelism for Memory-intensive Subgraphs
	Memory-intensive Subgraph Formulation
	Context-Aware Instruction Rescheduling

	On-Chip Resource Exploitation
	Global Thread Barrier Merging
	Optimizing Compute-Intensive Operators

	The MonoNN Compiler
	Optimization Space Abstraction
	Schedule-Independent Group Tuning
	Extremely Large Tuning Space
	Tuning Space Compression

	Implementation

	Scope, Impact, and Limitations
	Evaluation
	End-to-End Performance Comparison
	Overall Results
	Impact on Throughput with MPS
	Ablation Study

	MonoNN Optimization Breakdown
	Context-Aware Instruction Rescheduling Analysis
	On-chip Resource Exploitation Analysis
	Performance of Compute Intensive Operators
	Global Thread Barrier Merging Analysis
	Dissecting Non-computation Overhead

	Fusion Granularity Analysis
	MonoNN Tuning Speed
	Comparison with Rammer

	Related Work
	Conclusion

