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ABSTRACT
Embedding columns are important for deep recommendation mod-
els to achieve high accuracy, but they can be very time-consuming
during inference. Machine learning (ML) compilers are used broadly
in real businesses to optimize ML models automatically. Unfortu-
nately, no existing work uses compilers to automatically accelerate
the heavy embedding column computations during recommenda-
tion model inferences. To fill this gap, we propose RECom, the
first ML compiler that aims at optimizing the massive embedding
columns in recommendation models on the GPU. RECom addresses
three major challenges. First, generating an efficient schedule on
the GPU for the massive operators within embedding columns is
difficult. Existing solutions usually lead to numerous small kernels
and also lack inter-subgraph parallelism. We adopt a novel codegen
strategy that fuses massive embedding columns into a single kernel
and maps each column into a separate thread block on the GPU.
Second, the complex shape computations under dynamic shape sce-
narios impede further graph optimizations. We develop a symbolic
expression-based module to reconstruct all shape computations.
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Third, ML frameworks inevitably introduce redundant computa-
tions due to robustness considerations. We develop a subgraph op-
timization module that performs graph-level simplifications based
on the entire embedding column context. Experiments on both in-
house and open-source models show that RECom can achieve 6.61×
and 1.91× over state-of-the-art baselines in terms of end-to-end in-
ference latency and throughput, respectively. RECom’s source code
is publicly available at https://github.com/AlibabaResearch/recom.
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1 INTRODUCTION
Deep recommendation model inference accounts for a large portion
of data center workloads in many companies, including Google [8,
12], Meta [18, 40], and Alibaba [79, 80]. Typical deep recommenda-
tion models include two parts, which are the embedding layer and
the deep neural network (DNN) stacks. In industry, the embedding
layer consists of massive embedding columns (i.e., the subgraphs
that transform input features to embedding vectors through table
lookups) corresponding to different feature fields. It is common
for developers to generate thousands of statistic features and pro-
cess them with separate embedding columns for higher model
accuracy [70]. However, processing such a large number of em-
bedding columns is expensive. For example, our experiments on
models in Alibaba show that embedding columns can be responsi-
ble for even more than 99% of the end-to-end inference latency on

https://doi.org/10.1145/3623278.3624761
https://github.com/AlibabaResearch/recom
https://doi.org/10.1145/3623278.3624761
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623278.3624761&domain=pdf&date_stamp=2024-02-07


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zaifeng Pan et al.

GPUs. Therefore, optimizing the massive embedding columns in
recommendation models is urgently needed. Meanwhile, ML com-
pilers [34] are widely used to optimize conventional ML models
automatically. But currently, none of them can optimize the heavy
embedding columns. In this paper, we focus on using compilers
to accelerate the recommendation model inference with massive
embedding columns on the GPU.

Developing an ML compiler to accelerate the inference of deep
recommendation models on the GPU is very important, as it can
help companies save lots of manual effort. Traditionally, many com-
panies have employed expert teams to optimize their recommenda-
tion models. However, there can be thousands of deep recommen-
dation models in different business lines of a company with varied
embedding column structures. Besides, due to privacy considera-
tions, many real businesses require models to be optimized based
on the intermediate representation (IR) of the computation graph
rather than the source codes. For example, an industrial model in
Alibaba contains 3.5 million lines of IR in TensorFlow GraphDef [1]
format. Manually rewriting the model by analyzing such a large
amount of IR is impractical, so an ML compiler approach is required
to optimize the models automatically.

The characteristics of embedding columns in recommendation
models bring three fundamental challenges for compilation opti-
mizations. First, it is challenging to generate an efficient schedule
on GPU for the massive operators within thousands of embedding
columns. Traditional solutions cannot eliminate most of the large
non-computation overhead and cannot fully utilize inter-subgraph
parallelism. For a specific model (detailed in Section 7.6), XLA [15]
can generate over 10,000 kernels, which introduces significant non-
computation overhead and then results in only 33% of GPU active
time.Moreover, most of the generated kernels have very smallwaves
per SM1 that less than 0.06. Second, the dynamic shape characteris-
tics of recommendation models introduce many shape computation
operations. The mixture of shape and tensor computations makes
the graph topology too complicated to optimize. Third, the frame-
works can introduce many redundant operations for robustness
considerations. We found that the redundant computations can
contribute to 80% of the entire embedding processing time on the
GPU under extreme cases.

Researchers have put much effort into accelerating ML model
inference [5, 15, 25, 26, 43, 78]. There are ML compilers [5, 15,
78] supporting automatic code generation with kernel fusion for
lightweight memory-intensive operators, thus reducing the non-
computation overhead caused by fragmented operators. However,
these works target the conventional DNNs [31, 56], which cannot
be applied to handle the new challenges emerging in the recom-
mendation scenarios with massive embedding columns. Although
several ad-hoc computation libraries [25, 26, 43] have been pro-
posed to provide efficient implementations of specific operations
like the embedding table lookup, they focus on optimizing only the
matched patterns and require human efforts to rebuild the models
using their interfaces. Therefore, no previous work provides full-
scale automatic acceleration for recommendation model inference
with massive embedding columns.

1Waves per SM [42] are calculated by dividing the launched block number by the total
block number that can run concurrently on the GPU for the kernel.

In this paper, we propose RECom, an ML compiler that aims at
accelerating the inference of deep recommendation models on the
GPU. It effectively solves the challenges mentioned above. First, we
develop a novel inter-subgraph parallelism-oriented fusion method
to generate efficient code of the massive embedding columns in
a single kernel. It identifies the subgraph corresponding to each
embedding column, maps each subgraph to a group of threads on
the GPU, and then fuses the computations within the subgraph
together by leveraging the GPU hierarchical memory. Second, we
develop a shape computation simplification module to address the
shape computation challenge. It reconstructs all complex shape
computations based on symbolic expressions. Third, to remove the
redundant computations, we develop an embedding column sub-
graph optimization module to perform simplification by analyzing
the graph contexts.

We evaluate RECom on four real-world in-house production
recommendation models in Alibaba and two synthesized models.
Experiments show that RECom outperforms state-of-the-art base-
lines by 6.61× and 1.91× in terms of end-to-end inference latency
and throughput, respectively. In summary, this work makes the
following contributions:
▶ We unveil the three significant performance challenges of

embedding computations during recommendation model inference
and offer a set of solutions and insights.
▶ We propose RECom, the first ML compiler that optimizes

the time-consuming embedding column computations during the
inference of recommendation models.
▶ We evaluate RECom on four industrial and two synthetic

recommendation models. Experimental results show that RECom
outperforms the baselines significantly.

2 BACKGROUND AND MOTIVATION
2.1 Characteristics of Recommendation Models
Deep recommendation models are widely used in various appli-
cations [8, 12, 40, 79, 80]. For example, e-commerce websites use
them to recommend items to users by predicting user click-through
rates (CTR) on potential items. Optimizing the inference of these
models can bring significant economic benefits to businesses, as
it enables them to predict more potential items in a limited time,
thereby enhancing the quality of recommendations.

Deep recommendation model architecture. A deep recom-
mendation model typically consists of two main components: the
embedding layer and the DNN stack. The embedding layer often
consists of multiple embedding tables and maps the input features
into the low-dimensional embedding space [24]. The input features
include user features (e.g., age and click history) and item features
(e.g., price and category), which can be numerical values or strings.
An embedding table is a lookup table that contains multiple learn-
able rows, and each row is called an embedding vector. The DNN
stack usually contains attention structures [4, 79, 80] or multi-layer
perceptrons (MLP). Figure 1 shows the architecture of a typical
deep recommendation model for CTR prediction in the left part.
During the inference of a single sample, the model takes in 𝑁 input
features and looks up the corresponding embedding vectors from
the embedding tables. These embedding vectors are concatenated
and fed into the DNN to predict the CTR.
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Figure 1: A typical deep recommendation model architecture.
The dotted rectangle shows an embedding column example.

Embedding column.We define the subgraph that transforms
an input feature into an embedding vector as an embedding column.
The subgraph circled by the dotted rectangle in Figure 1 shows an
example of the embedding column, which typically consists of five
stages. 1○ Preprocessing. The embedding column first preprocesses
the input features, mainly including string processing (e.g., string
split) and numerical processing (e.g., multiplication). 2○ Lookup in-
dex translation. In this stage, the features are translated into indices
for later embedding lookup using bucketing, hashing, or keeping
the input data. 3○ Safety guarantee. Several safety guarantee oper-
ations are inserted before embedding lookup to prevent potential
errors, mainly including removing or replacing lookup indices that
are out of bounds and filling a default value for samples with miss-
ing features. 4○ Embedding lookup. In this stage, the embedding
column retrieves rows from the embedding table according to the
lookup indices. Multiple rows corresponding to the same sample
are combined with element-wise reduction, as shown in Figure 1.
5○ Post-processing. Finally, several post-processes can be applied
to the embedding vector, such as replacing and removing partial
values and reshaping.

During inference, the 𝑁 input features are fed into the corre-
sponding 𝑁 embedding columns and go through the five stages
to be transformed into the final embedding vectors. In production,
the value of 𝑁 , i.e., the number of embedding columns, can reach
thousands, as there are many statistical features. More details of
embedding columns are presented in Appendix A, including an
example of building them and an explanation of why the number
of them is typically large.

Dynamic shape. Existing compilers [5, 15, 78] rely on tensor
shape information to optimize the model inference processes. How-
ever, due to dynamic shapes, we cannot determine the tensor shapes
of recommendation models at compile time. Dynamic shape means
that the shapes of tensors are dependent on the model inputs and
can vary among different inferences. This characteristic is caused
by operators whose output shapes depend on input contents rather
than input shapes (e.g.,Where2) and the dynamic input shapes (e.g.,
varied pooling factors [50] and batch sizes and absent features [50]).

2Where operator returns the indices of non-zero elements for a tensor. See https:
//www.tensorflow.org/api_docs/python/tf/where.
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Figure 2: A subgraph from production models. Sp: Shape. S:
Slice. C: Concat. Rs: Reshape.

2.2 Major Limitations of Existing Solutions
Several hand-written libraries [25, 26, 43] have been proposed to
accelerate specific operations within embedding columns. However,
they are difficult to deploy widely and have a limited application
scope since they cannot enumerate all possible operator combina-
tions to pre-build the library. Additionally, with numerous models
and millions of lines of IR in each, it is impractical to optimize
manually using these libraries.

In contrast, ML compilers can perform automatic optimizations
on different models. They accept the computation graph IR, such
as TensorFlow GraphDef [1] and ONNX [13], and then adaptively
generate efficient codes for the target devices. The code genera-
tion process is also called codegen. Operator fusion is one of the
essential technologies to reduce memory transactions and non-
computation overheads during codegen [34]. Existing compilers
like TVM [5] and XLA [15] adopt input or output inline (i.e., ex-
panding the computation) to fuse injective (i.e., one-to-one map)
operators to their consumers or producers. Unfortunately, exist-
ing ML compilers [5, 15, 37, 78] mainly focus on DNNs, ignoring
the following performance challenges emerging in the massive
embedding columns of recommendation models.

Challenge 1: Thousands of embedding columnswith numer-
ous small-sized operators make generating efficient schedules
on the GPU difficult. For different subgraphs, the conventional
fusion strategy of ML compilers either maps them into multiple
kernels [5, 15] or executes each subgraph inside a kernel with global
barriers [78]. These strategies, on the one hand, ignore the great
parallelism among the subgraphs and cannot well utilize the GPU
resources. Experiments with XLA [15] and AStitch [78] show that
the waves per SM of most of their generated kernels are even less
than 0.06, indicating a very low GPU utilization. On the other hand,
they can lead to significant non-computation overhead due to fre-
quent kernel launches and global synchronizations. Besides, the
dynamic shape operators emerging in embedding columns (e.g.,
Where operator) pose new challenges in buffer management, fur-
ther impeding the greater fusion granularity and exacerbating the
non-computation overhead problem. Experiments for a model with
1,000 embedding columns (detailed in Section 7.6) show that ap-
plying XLA [15] can generate more than 10,000 separate kernels,
resulting in only 33% GPU active time.

Challenge 2: Complicated shape computations in dynamic
shape scenarios. Shape computation refers to the computation that
operates on tensor shapes rather than tensor values. For example,
Figure 2 shows a subgraph of shape computations with blue oper-
ators. The subgraph retrieves the shapes from two input tensors
and then generates an output shape to feed the Reshape operator,
which requires a shape input to reshape a tensor. In dynamic shape
scenarios, more than 30% of the operators in embedding columns

https://www.tensorflow.org/api_docs/python/tf/where
https://www.tensorflow.org/api_docs/python/tf/where
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can be shape computations, as many computations require shapes
as inputs for execution. Massive shape computations can break
the tensor computation patterns, preventing many potential graph
optimizations (detailed in Section 4.2).

Challenge 3: Inevitable redundant computations introduced
by frameworks. Algorithm developers usually use high-level APIs
provided by frameworks to build embedding columns (an example
can be found in Appendix A.1). Due to robustness considerations,
framework developers have to insert many safety guarantees within
their functions. However, these operations can be redundant in the
entire embedding column context. These redundant operations are
inevitable from the framework aspect, as developers cannot be
aware of the function usage context and cannot add any assump-
tions. Besides, algorithm developers tend to use general solutions
for convenience rather than specific high-performance solutions,
causing extra redundant overhead. Our experiments show that, un-
der extreme cases, 80% of the computation time can be unnecessary
for embedding columns.

RECom. In this paper, we propose a compiler system, RECom,
to accelerate recommendation model inference by tackling the
above three challenges with three components: massive embedding
column codegen (Section 3), shape computation simplification based
on symbolic expressions (Section 4), and embedding column subgraph
optimization (Section 5).

3 MASSIVE EMBEDDING COLUMN CODEGEN
To tackle the first challenge in Section 2.2, we introduce the mas-
sive embedding column fusion and code generation approach (Sec-
tion 3.1). Then, we describe the CPU-GPU co-running (Section 3.2)
to expand hardware usage and reduce GPU memory usage.

3.1 Inter-Subgraph Parallelism-Oriented Fusion
We propose the inter-subgraph parallelism-oriented fusion approach
to accommodate operators within thousands of embedding columns
into a single GPU kernel. This approach can significantly reduce
the non-computation overhead of embedding columns and exploit
both intra- and inter-subgraph parallelism.

3.1.1 Inter-Column Parallelism Mapping. To generate codes with
high parallelism, RECommaps the independent embedding columns
to different groups of GPU threads. The threads within each thread
group process one embedding column cooperatively and leverage
the hierarchical memory for intermediate data buffering and inter-
thread communication. In this way, RECom can effectively exploit
both intra-operator and inter-column parallelism of recommenda-
tion models with the GPU.

Specifically, we use a thread block to process one embedding col-
umn. As the executions of different thread blocks are independent,
the pattern divergence between embedding columns performs well.
Besides, the tail effect between embedding columns can be compen-
sated by the thread block scheduling. As discussed in Section 2.1,
the number of embedding columns can be more than one thousand
in modern recommendation models, while the workload of each
column is not heavy (batch size is often hundreds). At the same
time, the most popular GPUs used for ML inferences, e.g., NVIDIA
T4 and A10, can accommodate hundreds to around one thousand
thread blocks concurrently. Therefore, mapping each embedding

1 #Preceding 
Embedding Tables

Embedding 
Table

Embedding 
Columns

0
0

1 1

1 0
1
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Figure 3: Illustration of embedding column identification.

column to a thread block leads to a good map between the model
parallelism and GPU resources.

Given the basic insight of inter-column parallelism mapping,
the obstacles to enabling compilation optimization mainly includes
embedding column identification (Section 3.1.2), code generation
of every single embedding column containing complex patterns
(Section 3.1.3), and buffer allocation without knowing tensor shapes
at compile time (Section 3.1.4).

3.1.2 Domain Knowledge-based Embedding Column Identification.
In a recommendation model with massive embedding columns, it is
often unclearwhich operator belongs towhich specific column. This
is because real businesses usually require optimizing the models
with only computation graph IR, which provides little information
for partitioning different embedding columns. This lack of clarity
poses a significant obstacle to inter-embedding-column parallelism
mapping, which requires a clear partitioning of the columns.

Fortunately, we make several important observations that en-
able effective partitioning of embedding columns in a computation
graph. First, in typical recommendation models, the trainable vari-
ables in the graph are typically network weights, biases, or embed-
ding tables. Gathering operations are often applied to the embed-
ding tables according to the function of embedding columns. Mean-
while, compute-intensive network operators like GEMM and convo-
lution are usually applied to the network weights, and element-wise
addition is applied to the biases. Based on this observation, RECom
identifies the variables that maintain the embedding tables rather
than the network weights or biases. Second, in deep recommenda-
tion models, one embedding column typically corresponds to one
embedding table.

With the above domain knowledge of embedding columns, we
can cluster the operators that consume only one embedding table
variable directly or indirectly, as well as all their preceding op-
erators, into a subgraph corresponding to that embedding table.
Operators that consumemultiple embedding tables do not belong to
an embedding column subgraph. These operators include the con-
verging points of multiple embedding columns (e.g., Concatenate)
and their following neural network operators. The above approach
is illustrated in Figure 3. For each operator, we first count the num-
ber of embedding tables it consumes, presented as the red numbers
in the figure. Then starting from the embedding table variables, we
cluster all the different embedding columns, which are circled by
different colors in the figure. Appendix B illustrates the detailed
procedure of embedding column identification.

3.1.3 Group-based Intra-Column Code Generation. UnlikeML com-
pilers focusing on regular tensor computations such as GEMM and
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Figure 4: Illustration of the code generation procedure with
a sample 3-embedding-column graph.

element-wise operations, RECom targets the embedding column
computations involving many distinct operations. These operations
include shape computations, dynamic-shape operations such as the
Where operator, and embedding lookup operations [39].

To accommodate all the complex computations within a single
kernel, RECom uses a divide-and-stitch approach for code genera-
tion. It divides the operators of the embedding column subgraph
into several groups according to specific rules (described in the
next paragraph), generates the code of each group independently,
and “stitches” the groups together inside the same GPU kernel
by buffering the intermediate data on either shared memory or
global memory. The code of each embedding column is generated
independently and mapped to specific thread blocks.

Different from existing compilers [5, 15, 78], RECom generates
code for both tensor and shape computations in the fused kernel.
For tensor computations, it borrows the basic insight of grouping
and stitching approach in AStitch [78]. RECom identifies all the non-
injective operators [5], which we call dominant operators. RECom
clusters each dominant operator with its injective producers to form
an operator group for code generation. It generates the code of
the dominant operator by the corresponding template and expands
the computations of injective operators inline within a group. To
stitch the groups together, intermediate data between groups is
buffered into shared memory if its shape can be determined small
enough at compile time; otherwise, it is buffered into global memory.
RECom inserts block-level thread barriers to ensure data coherence
between groups. For shape computations, RECom simplifies each
complex shape computation subgraph by reconstructing it with a
unified operator of symbolic expressions, which will be discussed
in Section 4.2. RECom then translates the symbolic expressions
directly into code for shape computation. RECom performs shape
computations independently in the GPU registers for all threads
in the block rather than using shared memory to broadcast results.
This is because the shape computations are usually very lightweight
compared to extramemory transactions and block synchronizations.
The results of the shape computations are then made inline into
the consumer operators.

<𝑥">
<𝑥#>

<𝑥$, 8>

𝑥$' = 2×𝑥#'

placeholder 𝑥#' = 2×𝑥"

< > Tensor Shape Expression

𝑥+'  Symbol Upper Bound

Figure 5: Illustration of the buffer allocation by inferring the
memory upper bounds. 𝑥 ′

𝑖
denotes the upper bound of 𝑥𝑖 .

Figure 4 illustrates the code generation procedure of a graph
with three embedding columns. For each embedding column, RE-
Com first identifies the dominant operators and forms an operator
group as the code generation unit. Then, for the groups within an
embedding column, RECom “stitches” the generated codes for both
tensor and shape computations with barriers inserted and locates
them in a block.

3.1.4 Compile Time and Runtime Combined Buffer Allocation. RE-
Com needs to pre-allocate the global memory buffer of the outputs
and the intermediate data for the generated kernel before launch-
ing it. However, output shapes for many operators of embedding
columns can only be determined after execution. For example, the
output tensor shape of the Where operator is determined by the
content of the tensor value rather than the input shapes. A naïve
approach is to allocate buffers inside the fused kernel at runtime
dynamically. However, runtime allocation inside the kernel is quite
expensive.

We design the compile time and runtime combined buffer alloca-
tion approach to solve this problem. The key idea is to infer the
tensor shape upper bound expression of each operator at compile
time and allocate the global memory buffer accordingly at runtime.
Specifically, RECom infers the upper bound of the shape for each
tensor at compile time with the help of symbolic shape expressions.
Since the embedding column operators typically have dynamic
shapes, RECom cannot determine the exact shape value at compile
time. Instead, RECom represents the shape of each tensor with
symbolic expressions, which will be discussed in Section 4.1. Every
time a new symbol is added during the shape inference, RECom
calculates the upper bound of the symbol based on the existing sym-
bols. As shown in Figure 5, the left input operator is a placeholder
with shape <𝑥1>, and subsequent operators generate new symbols
𝑥2 and 𝑥3. RECom calculates the upper bound of these symbols
based on the operators used. Using the symbol upper bound and
the tensor shape expressions, RECom generates the corresponding
host code to compute the buffer size required for allocation at run-
time based on the input shape <𝑥1>. To reduce the overheads due to
frequent memory allocations for the massive embedding columns,
RECom merges all required buffers into a single large buffer that
can be allocated at once. Experiments show that merging the buffer
allocations reduces execution time by 35.1% (detailed in Section 7.5).

Although the graph has dynamic shapes, the contents of partial
buffers can be determined statically at compile time. For exam-
ple, the Bucketize3 operator requires a constant buffer to store the
boundary values. To eliminate allocation and assignment overheads
for such buffers, RECom allocates and assigns them during graph
construction rather than execution.
3Bucketize bucketizes the input tensor based on the given boundaries. See https:
//www.tensorflow.org/api_docs/python/tf/raw_ops/Bucketize .

https://www.tensorflow.org/api_docs/python/tf/raw_ops/Bucketize
https://www.tensorflow.org/api_docs/python/tf/raw_ops/Bucketize


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zaifeng Pan et al.

Em
bedding 

C
olum

n 0

Concat

Em
bedding 

C
olum

n 1

Em
bedding 

C
olum

n 2

Em
bedding 

C
olum

n 3

Em
bedding 

C
olum

n 4

Fused Embedding 
Columns

Concat

Merge

Merge

GPU

CPU

String 
Preprocess

Em
bedding 

C
olum

n 2

Em
bedding 

C
olum

n 4

Figure 6: An example of CPU-GPU co-running.

3.2 CPU-GPU Co-Running
RECom excludes two kinds of operations of embedding columns
from GPU fusion and instead executes them on the CPU. The first
is the string operation (e.g., regular expression matching) in the
string preprocess stage, which is typically better suited for CPU
processing. The second is the embedding column with an embed-
ding table size that exceeds a specific threshold. These large tables
typically correspond to features in the ID category (e.g., user ID
and item ID), which make up only a small percentage of the total
features. For example, only five of the 1,277 columns of model A
in Section 7 have embedding tables larger than 256MB. Placing
these few columns on the GPU provides only a slight performance
improvement but consumes much more GPU memory. By enabling
CPU-GPU co-running, RECom can enable a single GPU to handle
models with parameter sizes larger than its memory capacity. Ad-
ditionally, offloading these two types of operations to the CPU can
help better utilize the CPU computing resources.

After processing the embedding columns on both the CPU and
GPU, RECom concatenates all their outputs in the order of the em-
bedding columns to feed the subsequent DNNs. As GPUs are ideal
for processing compute-intensive operators in the DNN part, all
the embedding column outputs on the CPU need to be transferred
to the GPU. However, moving the CPU data of different embedding
columns one by one can cause significant performance degradation
due to the overhead of PCIe bus transfers and data transfer latency.
To address this issue, RECom merges these outputs on the CPU
into a contiguous array and then transfers it to the GPU memory
in one shot. Similarly, RECom merges the string preprocess results
on the CPU and then moves them to the GPU at once to feed the
fused kernel. The merging of cross-device transfers results in a 4.4×
speedup, as detailed in Section 7.5.

Figure 6 demonstrates the co-running of a model with several
embedding columns. RECom fuses the circled embedding columns
into one GPU kernel while leaving the string processes and columns
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Figure 7: Four pattern abstractions of symbolic shape expres-
sion inferences.

with large tables on the CPU. Tensors on the CPU are merged before
being transferred to the GPU.

4 SHAPE COMPUTATION SIMPLIFICATION
BASED ON SYMBOLIC EXPRESSIONS

To address Challenge 2 of shape computations discussed in Sec-
tion 2.2, we propose an approach based on symbolic expressions in
this section. Similar to BladeDISC [77], RECom builds the global
symbolic shape expressions of the embedding columns (Section 4.1).
Based on the symbolic expressions, we propose simplification meth-
ods through shape computation reconstruction (Section 4.2). Addi-
tionally, we show the elimination of shape-only tensor computa-
tions, which is a minor optimization, in Appendix C.

4.1 Global Symbolic Shape Expression Inference
The lack of shape information under dynamic shape scenarios
makes further graph optimizations difficult. To simplify shape
computations and enable other optimizations (Section 3.1 and Sec-
tion 5.2), RECom uses symbol-based expressions to represent the
shape of each tensor, which is called “symbolic shape expression”.
For example, a tensor’s shape can be represented by the symbolic
expression <𝑛1 + 𝑛2, 8>, where the values of symbols 𝑛1 and 𝑛2 are
determined at runtime. Given a computation graph of the recom-
mendation model, RECom infers the symbolic shape expression
from the input to all operators.

Figure 7 illustrates the four symbolic shape propagation pat-
terns: shape determinable, shape indeterminable, input constraint,
and tensor content known, respectively. In Figure 7 (a), the shape
determinable pattern is shown, where the output shape expressions
can be directly inferred from the input shapes. In Figure 7 (b), the
shape indeterminable pattern is depicted, where the output shape
expressions cannot be inferred without the content of the input
tensors. In such cases, RECom assigns a new symbol to the symbol
table and uses it as an unknown dimension size for the output shape.
Figure 7 (c) demonstrates the input constraint pattern. In the Concat
operator, the sizes of the dimensions to be concatenated should be
equal. Hence, RECom unites the symbols 𝑛0 and 𝑛2 in Figure 7 (c).
Finally, Figure 7 (d) presents an example of tensor content known
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tion eases the further graph optimizations. Operators in light
blue represent the shape computations.

pattern, where an operator requires a tensor to express the shape
of the output tensor, as in the case of the Reshape operator. In this
situation, RECom extracts the shape tensor content to help build
the shape expression for the output tensor.

4.2 Unified Shape Computation Reconstruction
The complex coupling of tensor and shape computations makes
graph optimization difficult. To ease the graph optimizations, RE-
Com reconstructs shape computations based on the symbolic ex-
pressions of the outputs. Specifically, RECom substitutes each sub-
graph of shape computation with a unified ShapeConstruct operator.
The ShapeConstruct operator performs the shape computation logic
according to the corresponding symbolic expression.

By reconstructing the shape computations, RECom simplifies
shape computation subgraphs and isolates them from the tensor
computations. Figure 8 demonstrates how the decoupling of tensor
and shape computations simplifies the graph and facilitates fur-
ther graph optimizations. Figure 8 (a) shows a subgraph of two
connected SparseReshape operators. If the only output of SR1 is
SR2, then SR1 is actually redundant because the two SparseReshapes
can be merged into one logically, as shown in Figure 8 (b). How-
ever, simply reconnecting the Tensor1 and Shape2 onto the latter
SparseReshape operator results in the case in Figure 8 (c), where
SR1 is still present. This is because the tensor Shape2 still indi-
rectly relies on the output of SR1. Nevertheless, this dependency is
unnecessary as the value of Shape2 does not depend on the compu-
tation of SR1. Fortunately, RECom can remove this dependency after
shape computation reconstruction. This is because the replaced
ShapeConstruct operators only depend on operators who really gen-
erate the required symbols, as shown in Figure 8 (d). Consequently,
the useless SR1 can be eliminated completely.

5 EMBEDDING COLUMN SUBGRAPH
OPTIMIZATION

In this section, we focus on the graph-level optimizations on each
embedding column subgraph to tackle the challenge of redundant
computations discussed in Section 2.2. We present how RECom

detects and eliminates unnecessary safety guarantees (Section 5.1)
and simplifies embedding lookup procedures (Section 5.2).

5.1 Unnecessary Safety Guarantee Elimination
For robustness consideration, framework developers have to insert
several safety guarantees before embedding lookup (as shown in
Figure 1). However, upon analysis of the entire embedding column
subgraph, we observe that most of these operations are actually
redundant and can be eliminated without posing any safety risks
or impacting the inference results.

Lookup index removal. Some safety guarantees are typically
applied to remove out-of-range lookup indices before embedding
lookup to prevent potential crashes. However, these guarantees are
often unnecessary as the lookup index translation stage already
maps the input data into valid ranges. Due to the lack of knowledge
of the runtime context and graph construction, framework develop-
ers cannot determine whether such index removals are necessary,
resulting in redundant ones. These operations can consume up to
17.7% of TensorFlow-GPU execution time (detailed in Section 8.5).
We propose an index range analysis and propagation approach
to address this issue at compile time. We identify frequent index
operation patterns in numerical preprocess, index translation, and
safety guarantees of embedding columns and use them to propagate
index value ranges at each stage. If the index value range already
satisfies lookup requirements after translation, RECom removes
the redundant safety guarantees of index removal. More details of
the above process are shown in Appendix D.

Empty row filling. Empty row filling is used to fill a default
lookup index for samples whose feature is absent for a certain
feature field, which is quite heavy on the GPU. This operation guar-
antees that each sample has at least one lookup index. However,
it is common for the corresponding embedding vectors of these
empty rows to be replaced with zeros during the post-processing
stage. In such cases, RECom proposes a modified lookup oper-
ator that merges the empty row filling, embedding lookup, and
post-replacement stages. This new operator directly sets the empty
rows’ corresponding vectors to zeros, thus eliminating the need
for expensive empty row filling and bringing 1.49× speedup over
TensorFlow-GPU (detailed in Section 7.5).

5.2 Embedding Lookup Simplification
The embedding lookup in the embedding column contains two
steps, which are the embedding table lookup by input indices and
the embedding vector reduction for the same sample [39].

However, the reduction operation can also be redundant if the
corresponding feature is a one-hot feature (i.e., univalent [12]). As
the framework developers cannot determine if the input is one-
hot or multi-hot when designing the lookup function, they treat
all features as multi-hot (i.e., multivalent [12]) to handle all input
cases. This design can lead to sub-optimal solutions for one-hot
features. RECom can detect this problem by using symbolic shape
expressions and prune the redundant reduction operations.

Besides, some algorithm developers may assign default values
to absent features, such as an empty string for string features. In
these cases, if the corresponding feature is also one-hot, the lookup
indices become dense tensors rather than sparse. RECom identifies
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Table 1: Statistics of models in the experiments.

Model Source # Output
Targets

# Embedd.
Tables

Embedd.
Dim.

Embedd. Dim.
Sum Table Size Embedd. Param.

Size
DNN Param.

Size
A Production 7 1277 4-20 9516 16B-1.0GB 4.6GB 47MB
B Production 7 1155 4-20 8596 32B-1.1GB 1.7GB 40MB
C Production 9 816 4-20 5960 16B-2.5GB 3.8GB 29.4MB
D Production 6 1050 4-20 7768 16B-1.35GB 2.6GB 35.1MB
E Synthesized 1 1000 8-32 8120 3.1KB-1.0GB 5.1GB 36.4MB
F Synthesized 1 1000 8-32 9672 3.1KB-1.0GB 3.1GB 89.8MB

this situation by verifying the symbolic shape expressions and then
transforms the tensors from sparse formats into dense formats.
Furthermore, RECom replaces the related sparse operators with
more efficient ones targeting dense tensors.

By simplifying each lookup procedure accordingly, we observe
a 1.86× speedup over TensorFlow-GPU (detailed in Section 7.5).

6 IMPLEMENTATION
Optimization workflow of RECom. Figure 9 shows the optimiza-
tion workflow of RECom. Given a computation graph of a recom-
mendation model, RECom performs the following optimization
steps. 1○ RECom first identifies the embedding columns in the
model based on our domain knowledge. 2○ For each embedding
column, as the shape information is missed, RECom performs sym-
bolic shape inference to represent tensor shapes as symbolic expres-
sions. 3○ Based on the symbolic expressions, RECom replaces each
shape computation subgraph with a unified operator to simplify
the computation graph. 4○ With the simplified graph, RECom fur-
ther eliminates the redundant computations based on the analysis
of the entire embedding column subgraph. 5○ After graph-level
optimization for each column, RECom fuses the columns into a
single GPU kernel and maps each column into a thread block. 6○ Fi-
nally, RECom places CPU-friendly operations on the CPU to enable
CPU-GPU co-running.

Implementation details. Currently, we implement RECom as
a TensorFlow [1] add-on consisting of 12.5K lines of C++ code.
RECom utilizes SymEngine library [54] to perform symbolic expres-
sion computations in Section 4. RECom leverages the TensorFlow
API to register custom operators and graph optimization passes. To
use RECom, users only need to add one line in the script to load the
dynamic-link library, without modifying the source code of neural
networks. Then, RECom can obtain the original computation graph
and replace it with an optimized one. Although we implement it
as a TensorFlow add-on, the basic idea can be applied to other ML
frameworks as well.

7 EVALUATION
7.1 Experimental Setup
Models. In our experiments, we use four real-world in-house pro-
duction recommendation models and two synthesized models to
evaluate RECom. The model statistics are listed in Table 1. The
four production models are from Alibaba, and their model types are
Deep Bayesian Multi-Target Learning (DBMTL) [58]. We also syn-
thesize two Deep Learning Recommendation Models (DLRM) [40]
with different configurations and the corresponding feeding data
for reproducibility. We use TensorFlow FeatureColumn API [1] to
build the embedding columns for these two models.
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Figure 10: Given the same batch sizes, RECom achieves speedups of 6.61×, 51.45×, and 8.96× for average inference latency
compared with TF-CPU, TF-GPU, and TF-CPU-GPU, respectively. The vertical axes are latency in the log scale.

Baselines. For the end-to-end comparison in Section 7.2, we
use TensorFlow (TF) [1] with different device configurations as our
baselines, including TF-CPU, TF-GPU, and TF-CPU-GPU. This is
because no existing work can automatically optimize the heavy
embedding columns in current recommendation models, as dis-
cussed in Section 2.2. For TF-CPU-GPU, we put the embedding
layer on the CPU and the DNNs on the GPU to accelerate the DNN
stacks. Besides, we perform further case studies to compare withML
compilers (XLA [15] and AStitch [78]), ad-hoc libraries (NVIDIA
HugeCTR [43]), workload schedulers (DeepRecSys [17]), and our
internal manually-optimized solutions in Section 7.6.

Due to fairness considerations, we use different numbers of
CPU cores between experiments on the CPU-GPU platform and
on the CPU-only platform. We use 4 CPU cores when GPU is used
(RECom, TF-GPU, and TF-CPU-GPU) and 32 CPU cores for pure
CPU experiments (TF-CPU) according to their prices on Alibaba
Cloud platform.

Hardware/software specifications.We perform experiments
on machines equipped with an Intel Xeon Platinum 8163 CPU and
an NVIDIA Tesla T4 GPU, whose TDPs are 150W and 70W, re-
spectively. NVIDIA Tesla T4 is a popular inference card due to
its abundant low-precision computing resources, low energy us-
age, and competitive price. The TensorFlow version is 2.6.2, with
OneDNN optimization [23] enabled. Our codes are compiled by
GCC 7.3 and NVCC 11.3 with -O3 enabled.

Metrics. We evaluate the latency and the throughput under
service level agreements (SLA) of RECom to demonstrate its effec-
tiveness, as they are both important metrics for model inferences
in production environments [18].

Configuration. To measure the inference latency, we launch
a TensorFlow session to process 1,000 queries sequentially after
warming up and then calculate the average latency. We prepare all
the input features in advance and convert them into TensorFlow
tensors before the measurement. As for throughput measurement,
we launch a session with multiple worker threads to serve 1,000
queries concurrently. The batch sizes of the queries are tuned to
meet the SLA constraint.

7.2 End-to-End Performance
Latency under different batch sizes. Figure 10 presents the infer-
ence latency of RECom, TF-CPU, TF-GPU, and TF-CPU-GPU on the
six models, with batch sizes ranging from 32 to 2048. Experiments
show that for all models under any batch size, RECom outperforms
the three TensorFlow baselines significantly. On average, RECom
achieves speedups of 6.61×, 51.45×, and 8.96× for inference latency
compared with TF-CPU, TF-GPU, and TF-CPU-GPU, respectively.

An interesting observation is that, under small batch sizes, the
inference latency of TF-CPU does not strictly increase as batch size
increases. The reason is that TensorFlow tends to schedule cheap
operators on a single thread so that a large number of operations in
different embedding columns can be executed sequentially under
small batch sizes.

We observe that TF-GPU brings much higher latency than TF-
CPU for all batch sizes. This is because the thousands of embedding
columns introduce massive small operators, leading to significant
non-computation overhead and hardware under-utilization. We
show the detailed analysis in Section 7.4. The latency gap between
TF-GPU and TF-CPU decreases as the batch size increases. This
phenomenon is in line with our expectations. On the one hand,
larger batch sizes increase the GPU speedup of DNN over the CPU.
On the other hand, due to the GPU under-utilization problem of
TF-GPU, the execution latency of the embedding layer is insensitive
to the batch size.

TF-CPU-GPU does not improve performance compared with TF-
CPU. On the one hand, the computations of DNNs are lightweight
compared with embedding columns, so putting them on GPU brings
little benefit. On the other hand, for a fair comparison, the number of
CPU cores used for TF-CPU-GPU is less than that for TF-CPU. This
causes higher latency on the embedding computations. Besides, the
memory copy from the CPU to the GPU introduces extra overhead.

Throughput under SLA. In Figure 11, we present the through-
put (inferences per second) comparison between RECom and TF-
CPU under the SLA of 100ms with different numbers of worker
threads. The results show that RECom achieves 1.91× improvement
over TF-CPU. We do not present the throughput of TF-CPU-GPU
and TF-GPU because they either cannot satisfy the SLA, whatever
the batch size is, or can only achieve little throughput.
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Figure 11: Under SLA of 100ms, RECom improves the
throughput by 1.91× over TF-CPU. TF-CPU-GPU and TF-
GPU are not presented as they cannot meet the SLA.
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Figure 12: For throughput normalized to price and energy,
RECom achieves 2.01× and 1.97× average improvement over
TF-CPU, respectively.

7.3 Normalized Throughput
As RECom and the TF-CPU baseline use different hardware re-
sources (T4 + 4 CPU cores for RECom, and 32 CPU cores for TF-
CPU), we present the throughput normalized to the resources with
four worker threads in this section to prove the fairness of our
comparisons. We also add the evaluation with 64 CPU cores for
TF-CPU with eight workers in this section.

Cloud instance prices.Our experiments are performed on three
popular cloud instances provided by Alibaba Cloud, which are
ecs.c5.8xlarge, ecs.gn6i-c4g1.xlarge, and ecs.g5.8xlarge.
The rental price of a cloud instance is a crucial factor in reflecting
the resource cost of each solution, as cloud vendors determine the
prices of different instances by considering factors like hardware
and energy costs. On the other hand, for companies deploying their
models on the cloud, renting a cloud instance is the only cost they
need to consider.

Figure 12 (a) shows the comparison of throughput normalized to
the rental cost of RECom and TF-CPU. The results are figured out
by dividing the throughput by the corresponding one-month cloud
rental fee. We find that at the same rental cost, RECom obtains an
average of 2.01× throughput compared with TF-CPU.

Energy costs.We also compare the energy cost of RECom and
TF-CPU. By directly dividing by the TDP of the platform, RECom

101
102
103 Model A Model B Model C

32 256 2048
101
102
103 Model D

32 256 2048

Model E

32 256 2048

Model F

0.0 0.2 0.4 0.6 0.8 1.0

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y 

(m
s)

TensorFlow-CPU TensorFlow-GPU RECom

Figure 13: On average, RECom achieves 9.89× and 74.17×
speedup of the embedding latency over TF-CPU and TF-GPU.

0
25
50
75 Model A

0
10
20 Model B

0
5

10 Model C

32 256 20480
10
20 Model D

32 256 20480
10
20 Model E

32 256 20480
10
20
30 Model F

0.0 0.2 0.4 0.6 0.8 1.0

Batch Size
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

String Preprocesses
Input Merging
Fused Embedding Column

Concatenation
4-Core Enabled
32-Core Enabled

Figure 14: Embedding layer breakdown of RECom equipped
with different numbers of CPU cores. The left bar with “//”
indicates 4 CPU cores are enabled, while the right bar with
“\\” indicates 32 cores are enabled.

still achieves 1.3× normalized throughput compared with TF-CPU.
However, as RECom only uses the CPU’s partial resources (4 cores),
TDP cannot accurately reflect its energy consumption. Therefore,
we use Intel PCM [22] and nvidia-smi [44] to monitor the CPU’s
and GPU’s actual power usage during the evaluation. We sample
the power consumption every 0.5 seconds and take the average
power after finishing the execution.

Figure 12 (b) presents the throughput normalized to the energy
cost of RECom and TF-CPU. Although using more cores for TF-
CPU increases its throughput, the normalized throughput does not
change significantly. Experimental results show that at the same
energy cost, RECom achieves a 1.97× speedup over TF-CPU in
terms of throughput.

7.4 Breakdown
Embedding-only inference latency. To evaluate the performance
improvement on the embedding column processing of RECom, we
remove the DNNs in the models and measure the latency. Figure 13
presents the embedding-only inference latency of RECom, TF-CPU,
and TF-GPU with different batch sizes. The results show that, on
average, RECom achieves 9.89× and 74.17× speedups of the embed-
ding latency over TF-CPU and TF-GPU.

Embedding column performance breakdown. We observe
that as the batch size increases, the speedup of RECom decreases.
The decrease is because the string preprocessing on the CPU with
a few cores cannot keep up with the processing speed of the GPU
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Figure 15: Performance analysis of TF-GPU.

consumer at large batch sizes. We present the execution time of
string preprocess (CPU), input merging and transmission (CPU-
GPU), fused embedding column processing (GPU), and embedding
vector concatenation (GPU) with different batch sizes in Figure 14.
When batch size is 2,048, the string preprocessing can account
for up to 60.5% of the total processing time with the 4-CPU-core
setting. However, by increasing the number of CPU cores to 32,
we can observe up to 78.3% reduction of the string preprocessing
overhead. Note that before the optimization of RECom, even for
model A under the batch size of 2,048, the string preprocessing time
accounts for only 19% of the total execution time on the CPU.

TF-GPU performance breakdown. Section 7.2 shows that un-
like traditional models (e.g., CNNs and Transformers), the perfor-
mance of TF-GPU is significantly worse than TF-CPU for recom-
mendation models. We present the execution time breakdown of
TF-GPU in Figure 15 (a) to reveal the reasons behind its low perfor-
mance.We use the batch size of 256 in this evaluation and only show
the breakdown of the embedding parts. We find that the GPU ker-
nel execution time accounts for only 35% of the entire embedding
execution time on average. This is because kernel launches, synchro-
nization, and operator scheduling introduce tremendous overheads.
For example, during the execution of the embedding parts of model
A, there are 136,644 operators and 37,580 GPU kernels. Although
the overhead of each kernel launch, kernel synchronization, and
operator scheduling is around several microseconds (e.g., launch
overhead is 1.08`s as reported in [69]), the accumulated overhead
is huge and accounts for 59% of the execution time. By fusing the
numerous operators across embedding columns, RECom eliminates
most of the above overhead.

Besides, most of the kernels in TF-GPU are too small-scaled
to utilize the resources on the GPU fully. Figure 15 (b) shows the
distribution of waves per SM of TF-GPU kernels on model A.Waves
per SM [42] (i.e., wave number) reflect the GPU resource utilization
by taking all of the launched blocks, SM number, and occupancy
into consideration. We omit the kernels with wave numbers higher
than 0.08 as they account for only less than 5% of total kernels. As
shown in Figure 15 (b), the wave numbers of 94.4% of kernels are
even less than 0.06, indicating significant waste of GPU resources.
By contrast, the fused kernel of RECom achieves an average wave
number of 2.43 in our evaluation.

7.5 Ablation Study
Impact of graph-level optimizations and massive embedding
column codegen. Both modules of shape computation simplifica-
tion and embedding column optimization (including unnecessary
safety guarantee elimination and lookup procedure simplification)
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Figure 16: End-to-end latency comparison before and after
graph-level optimizations being applied with the batch size
of 256. The “-Opt” suffix indicates that the graph is optimized
by shape computation simplification and embedding column
optimization.

perform graph-level optimizations. Experimental results show that
the graph-level optimizations reduce 84.42% of the operators in the
embedding columns. We then present the inference latency of raw
TF, only graph-level optimizations enabled, and full RECom opti-
mizations enabled in Figure 16 under the batch size of 256. As these
graph-level optimizations are independent of specific hardware,
we apply the graph-level optimizations to all TF-CPU, TF-GPU,
and TF-CPU-GPU. We use the “-Opt” suffix to indicate that graph-
level optimizations are performed. For example, TF-CPU-GPU-Opt
means the graph-level optimizations are applied, with the embed-
ding parts on the CPU and DNNs on the GPU. Compared with them,
RECom further enables the massive embedding column fusion and
codegen optimization.

The results show that by enabling graph-level optimization, we
can bring 4.37× speedup on TF-GPU. In detail, the shape computa-
tion simplification and embedding column optimization contribute
1.22× and 3.58× speedups, respectively. For the embedding column
optimization, eliminating the unnecessary invalid index removals
and empty row fillings brings 1.22× and 1.49× speedups, respec-
tively. Simplifying each embedding lookup procedure also brings a
1.86× speedup. By applying the column fusion and code generation
after graph-level optimization, we can further achieve an 11.20×
speedup. The massive embedding column codegen contributes to
the major performance improvement of RECom. By disabling the
buffer allocation merging and the CPU-GPU data transfer merg-
ing during codegen, we observe 1.54× and 4.47× of performance
degradation, respectively.

The graph-level optimizations also bring a 1.95× speedup on
TF-CPU-GPU, which is smaller than that on TF-GPU. On the one
hand, the large number of operators can introduce more significant
overhead on the GPU due to frequent kernel launches, synchroniza-
tions, and off-chip memory accesses. On the other hand, redundant
computations like Unique operators are more expensive on the GPU
than on the CPU.

TF-CPU gains little from the graph-level optimizations because
the 32 cores are not fully utilized, and the scheduling policy of
TensorFlow can make TF-CPU-Opt even slower than TF-CPU.

Memory saving from CPU-GPU co-running.We put embed-
ding columns with large embedding tables (≥ 256MB) on the CPU,
as the number of such columns is often small but consumes a large
memory footprint. As shown in Table 2, several embedding tables
can account for up to 97.4% of the entire model parameters in
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Table 2: The information of large embedding tables.

Models A B C D E F
#Large Tables (≥ 256MB) 5 2 4 3 5 3

Memory Consumption (GB) 4.2 1.36 3.7 2.41 5.0 3.0
Percentage of All Tables (%) 91.3 80.0 97.4 92.7 98.0 96.8
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Figure 17: Comparison between RECom and TF baselines
and other ML compilers with different numbers of columns.

production. Experimental results indicate that by offloading these
columns to the CPU, the inference performance only changeswithin
5% on average, but 92.7% of the GPU memory usage can be saved.

7.6 Microbenchmark Comparison with Prior
Works

ML compilers like XLA and AStitch. We synthesize models with
various numbers of typical embedding columns (from 10 to 1,000)
and measure the latency of their embedding parts. We believe this
range of embedding column numbers can cover most real-world
situations in different applications. Figure 17 shows the inference
latency of RECom, TF-CPU, and TF-GPU with a batch size of 256.
Besides, we compare the performance of two state-of-the-art ML
compilers, XLA [15] and AStitch [78], on the GPU. Note that for
dynamic-shaped graphs, these two compilers introduce significant
compilation overhead. We feed the model with the same input data
so that the shapes of the graph do not change, thus eliminating the
compilation overhead in this experiment. Compilers like TVM [5]
and BladeDISC [77] are not compared as they fail to support the
compilation of typical embedding columns.

Results show that with different numbers of embedding columns,
RECom achieves 14.01× to 116.23× speedups over TF-GPU. Al-
though XLA and AStitch can bring 1.07× and 1.13× over TF-GPU
on average, their improvements are much smaller than RECom. On
the one hand, even with fixed input shapes, their fusion granularity
is limited by the operators with dynamic output shapes. Therefore,
they still generate 10,041 and 8,053 kernels for the models with
1,000 columns and cause significant non-computation overhead,
which is similar to the analysis shown in Section 7.4. On the other
hand, both XLA and AStitch process the embedding columns se-
quentially, while the workload of each column is small-scale. There-
fore, they share similar wave number distribution in Figure 15 (b)
and leave the GPU resource under-utilized. For TF-CPU, RECom
achieves comparable performance even when the number of em-
bedding columns is only 10. As the number of embedding columns
increases, RECom achieves 1.52× to 3.07× speedups over TF-CPU.
More results with various batch sizes can be found in Section E.
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Figure 18: Comparison of embedding lookup kernel execu-
tion time with HugeCTR.

CUDA streams [45] enable the concurrent execution of multiple
kernels with different streams on the GPU, which can alleviate
the GPU under-utilization. However, the current TensorFlow[1]
runtime does not support this feature, so XLA and AStitch have
to process the columns sequentially. Besides, concurrent streams
cannot avoid kernel launch overheads [45] and can introduce extra
scheduling overheads. To demonstrate this, we manually bind the
kernels in the 1,000 columns of the microbenchmark model into
different streams and observe a 17.8× performance degradation
compared to the fused kernel.

Libraries like HugeCTR. As discussed in Section 2.2, ad-hoc
solutions like NVIDIA HugeCTR [43] fail to be widely adopted in
companies for several reasons. However, it is still meaningful to
compare RECom with them for specific operations, such as the
embedding lookup. HugeCTR separates the embedding lookup into
two stages, which are gathering embedding vectors and reducing
vectors for each sample. As its implementation of the gathering
stage involves many operations like inter-GPU caching, which
is unrelated to our work, we only compare the reduction stage
of HugeCTR with RECom. For embedding tables with the same
embedding vector dimension, HugeCTR uses a single kernel to
perform their reduction. Each block within the kernel is responsible
for one sample in the batch and processes the multiple features
sequentially. We compare the kernel execution time of RECom
(including the entire embedding lookup) and HugeCTR (including
the reduction stage only) with the batch size of 256 in Figure 18. The
results show that the kernel generated by RECom has a comparable
performance with HugeCTR. Besides, in real usage, RECom can
handle more flexible embedding column structures and fuse more
operators for greater improvement.

We also study the effect of different batch sizes on HugeCTR
performance and list the results in Appendix E. We observe that
HugeCTR performs better when the batch size is very large. This
is because HugeCTR is mainly optimized for training processes,
where large batch sizes are preferred. During inference, the batch
size is usually around several hundred, for which RECom achieves
similar or better performance than HugeCTR.

Combination with workload schedulers. DeepRecSys [17]
and Hercules [29] are efficient workload schedulers that improve
the recommendation inference throughput in heterogeneous envi-
ronments. Their scheduling strategies take factors like query arrival
patterns, model architectures, and accelerator characteristics into
account. However, they do not accelerate the execution of infer-
ence kernels, which are entirely orthogonal to RECom. To further
improve RECom’s CPU utilization and overall throughput, we can
use DeepRecSys to dispatch partial queries to TF-CPU.
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We perform an evaluation to combine RECom and DeepRec-
Sys [17] to optimize the throughput of recommendation model
inferences further. We use 32 CPU cores and one T4 GPU during
the evaluation. We take the static scheduler in [17] without RECom
support as the baseline. Experimental results show that DeepRec-
Sys achieves a 2.8× throughput improvement over the baseline, as
it balances the request-level and batch-level parallelism using the
hill-climbing algorithm. Enabling RECom optimization on the static
scheduler also results in a 3.2× improvement. However, the naïve
scheduling strategy can under-utilize partial CPUs, limiting the
throughput improvement. By combining RECom with DeepRecSys,
we finally obtain a 4.9× improvement over the baseline.

Manually-optimized solutions.Before RECom, our team adopts
a manually-optimized CPU solution with avx512 support to serve
the recommendationmodels. This solution extracts thematched em-
bedding columns in the models and replaces them with optimized
ones, which is labor-intensive and not flexible. We evaluate its per-
formance on supported models A, C, and D. It fails to optimize other
models due to the subgraph mismatches. Experiments show that
compared to TF-CPU, this solution achieves an average speedup
of 1.54× with a batch size of 256, which is significantly less than
RECom (2.99× for these models with the same batch size). This is
because RECom can fully exploit both intra- and inter-subgraph par-
allelism by utilizing the powerful GPU. The detailed experimental
results are listed in Appendix E. We also compare REComwith GPU
solutions that manually fuse all embedding columns. For simple and
small models, such as tens of embedding columns, RECom obtains
similar speedup with manually-optimized GPU solutions. How-
ever, for models with more than hundreds of embedding columns,
manually performing fusion optimization is impractical.

8 RELATEDWORK
Deep recommendation model optimization. Deep recommen-
dation models have been widely used in various applications [3,
8, 9, 40, 52, 79, 80] and attracted the interest of many architecture
and system researchers [17, 18, 29, 39, 50, 53, 62, 66, 68]. Many
works [33, 38, 39, 50, 61, 71] are proposed to optimize the train-
ing of recommendation models, but they pay little attention to the
inference tasks. DeepRecSys [17] and Hercules [29] dispatch work-
loads to CPUs and accelerators to improve inference throughput,
which are orthogonal works to RECom. Several works [2, 43, 64]
designed GPU-side embedding-caching mechanisms to compen-
sate for the gap between the CPU-side DRAM accessing and GPU
processing. In contrast, we mainly focus on models that can be
fitted to the GPU. Many solutions are proposed to speed up the em-
bedding table lookup, including near-memory processing [28, 32],
GPU-based [43] optimizations, and FPGA-based [21, 25, 26] solu-
tions. However, they do not optimize the massive operators in the
embedding columns. Many implementations in MLPerf [48] are
proposed to accelerate the inference of the standard DLRM [40]
on Criteo [27] dataset, whose embedding part is simple. However,
industrial recommendation models often contain massive embed-
ding columns with various graph structures, which is beyond their
application scope. More importantly, all of the above works are
ad-hoc solutions that require huge manual efforts to rebuild models,
which is intolerable for many companies.

Machine learning compilers and automatic optimizers.Many
works on tensor programs optimizations have been proposed in
recent years [7, 16, 36, 47, 57, 59, 60, 63, 83], like machine learn-
ing compilers [5, 15, 37, 55, 67, 77, 78, 82] and frameworks for
operator fusion and pipelined scheduling [46, 75, 76]. However,
these optimizers fail to optimize the embedding computations in
recommendation models for the following reasons. On the one
hand, most existing compilers [5, 15, 37, 78] only optimize mod-
els with static shape information and fail to handle the dynamic
shape characteristics of recommendation models. On the other
hand, these compilers focus on the optimizations for neural net-
works like MLPs, CNNs [31], and Transformers [56]. They do not
design specific optimizations for the embedding computations and
leave the inter-embedding-column parallelism unexploited. Many
works [6, 10, 11, 19, 20, 30, 49, 51, 65, 72–74, 81] are provided to gen-
erate high-performance tensor programs of GEMM-centric (dense
or sparse) graphs. In contrast, we focus on the fusion of memory-
intensive operators within embedding columns. BladeDISC [77] is
an ML compiler that supports dynamic shape input tensors and
symbolic shape optimization but does not provide any embedding-
related optimization, including compiling operators whose shapes
depend on the input contents. NVIDIA provides CUDA graphs [41]
to reduce the overhead of kernel launch. However, programmers
can only create static-shaped graphs with CUDA graphs. Our work
can well merge the GPU operations of dynamic-shaped graphs.

9 CONCLUSION
In this paper, we propose RECom, the first ML compiler that aims to
accelerate the expensive embedding column processing during the
inference of deep recommendation models. First, we propose the
inter-subgraph parallelism-oriented fusion method to generate effi-
cient GPU codes to process massive embedding columns in parallel.
Second, we recognize the shape computation problems that arise in
dynamic shape scenarios and adopt an approach based on symbolic
expressions to solve them. Third, we develop an embedding column
optimization module to eliminate redundant computations. Exper-
iments show that RECom outperforms state-of-the-art baselines
by 6.61× and 1.91× in terms of inference latency and throughput,
respectively. We believe that RECom fills a long-overlooked gap in
ML compilers for deep recommendation models.
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A DETAILS ABOUT EMBEDDING COLUMNS
In this section, we present more details about embedding columns,
including the example of building embedding columns and the
illustration of the massive embedding columns.

A.1 Building Embedding Columns with
High-level APIs

Developers usually rely on high-level APIs to build embedding
columns. We present a simple example in Listing 1 to illustrate how
to use TensorFlow FeatureColumn APIs [14] to construct a model
with multiple identical embedding columns. For each input feature
in string type, we first hash it into a numeric tensor (Lines 6-8)
and then perform an embedding lookup (Lines 9-10). The lookup
operation in Lines 9-10 already contains the safety checks discussed
in Section 5.1 for robustness considerations. Finally, we concatenate
all the embedding column outputs into a single tensor (Lines 13-14).

Listing 1: Example of building embedding columns
1 import tensorflow as tf
2
3 features = {...} # placeholder mapping
4 columns = []
5 for feat_name, feat in features.items():
6 col = tf.feature_column.
7 categorical_column_with_hash_bucket(feat_name,
8 embedding_table_rows, dtype=tf.string)
9 col = tf.feature_column.embedding_column(col,
10 embedding_dim, combiner='mean')
11 columns.append(col)
12
13 embeddings = tf.feature_column.input_layer(features,
14 columns)

A.2 Massive Embedding Columns
Industrial recommendation models often consist of thousands of
embedding columns, as there are numerous features. The feature
numbers are very large due to the following reasons. First, a typical
app usually has dozens of scenes, e.g., a homepage and detail pages,
and different categories like music, dance, etc. Second, for each
scene, there are dozens of raw features that need to record, e.g., du-
ration, followers, comments, and so on. Third, for each of these raw
features, we need to generate its statistical characteristics, including
min/max/sum/avg in different periods (e.g., one day/week/month).
Besides, for these statistical features, algorithm developers often
use embedding to model them [4, 35] to improve recommendation
accuracy. In this way, algorithm developers can build models with
a large number of embedding columns.

Besides, different embedding columns often have different graph
structures. For example, they can adopt different preprocess op-
erations and index translation functions. The numbers of embed-
ding vectors and the embedding vector dimensions can also vary
among columns. The diversity of embedding columns and their
combinations makes it difficult to pre-build libraries to serve all
conditions. Therefore, a compiler-based optimization approach is
urgently needed.

B ILLUSTRATION OF EMBEDDING COLUMN
IDENTIFICATION PROCEDURE

In this section, we illustrate the detailed procedure of embedding
column identification discussed in Section 3.1.2.

Algorithm 1 Embedding Column Subgraphs Identification
Input: graph 𝐺
Output: embedding column subgraphs
1: count the preceding embedding tables of each operator in 𝐺
2: for each 𝑇 in embedding tables do
3: initialize subgraph 𝑠𝑔← {𝑇 } and queue 𝑞 ← {𝑇 }
4: while 𝑞 is not empty do
5: dequeue 𝑛 from 𝑞

6: for each𝑚 in 𝑛’s succeeding operators do
7: if #preceding embedding tables of𝑚 ≤ 1 then
8: insert𝑚 into 𝑠𝑔 and enqueue𝑚 into 𝑞
9: do
10: for each 𝑛 in the operators of 𝑠𝑔 do
11: for each𝑚 in 𝑛’s preceding operators do
12: insert𝑚 into 𝑠𝑔 if it’s not in 𝑠𝑔

13: while 𝑠𝑔 has been updated
14: output 𝑠𝑔

Algorithm 1 shows the process of identifying embedding col-
umn subgraphs. It first calculates the number of the preceding
embedding tables of each operator in the graph (Line 1), and the
results are illustrated in Figure 3 as the numbers beside each circle.
Then, starting from each embedding table, Algorithm 1 performs
a breadth-first search until finding operators with more than one
preceding embedding table and inserts the visited operators into
the current embedding column subgraph (Lines 3 to 8). Finally, the
algorithm iteratively adds the preceding operators of all operators
in the current subgraph until no more operators are added (Lines 9
to 13). This step adds the operators with no preceding embedding
table to the corresponding embedding column subgraph. The final
partitioned subgraphs are illustrated in Figure 3.

C SHAPE-ONLY TENSOR COMPUTATION
ERASING

This section proposes shape-only tensor computation erasing, which
is a minor optimization in the shape computation simplification
module of RECom.

[𝑛", 4, 2]

<𝑛&, 8>
[2]

[𝑛&, 8]Rs
[𝑛&, 2]

ShapeConstructSource of 𝑛&

Source of 𝑛"

(a) A subgraph after reconstruction. 
𝑛" and 𝑛& have been united.

(b) RECom replaces the 𝑛&
input by 𝑛" .

[𝑛", 4, 2]

<𝑛", 8>
[2]

[𝑛", 8]Rs

ShapeConstructSource of 𝑛&

Source of 𝑛"

Figure 19: Example of shape-only tensor computation eras-
ing.

Shape-only tensor computation refers to the operation whose out-
puts are consumed only by ShapeConstruct operators. This means
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that the only function of these operators is to generate symbols
for later operators, and the tensor contents of their outputs are
irrelevant for subsequent computations. When RECom discovers
a shape-only tensor computation, it identifies the shape symbols
generated by this operator and checks all their union symbols
from other operators. If there is a symbol from a non-shape-only-
tensor-computation operator, RECom then replaces the original
operator with this operator to eliminate unnecessary computation.
Figure 19 (a) shows a subgraph after shape-only tensor computation
erasing. The symbols 𝑛1 and 𝑛2 are equal due to the input con-
straints. The source of 𝑛2 in Figure 19 (a) has only one output, a
ShapeConstruct operator, so it is regarded as a shape-only tensor
computation operator. RECom detects this situation and replaces
the input of ShapeConstruct from the source of 𝑛2 to 𝑛1.

D RANGE-BASED ELIMINATION OF
REDUNDANT LOOKUP INDEX REMOVALS

In this section, we present the detailed approach to detecting and
eliminating redundant lookup index removals.

We systematically summarize the four most frequent patterns
of index operations in the numerical preprocess, index translation,
and safety guarantees of embedding columns. Note that the lookup
indices are often represented as a sparse tensor because samples
within a batch can have varied item numbers or even be empty
for the same feature field. The sp_values refer to the non-absent
lookup indices in the sparse tensor, while the sp_indices refer to
the corresponding indices for the elements in sp_values. As shown
in Figure 20 (a), the map pattern maps each element of the lookup
indices to a new index value. The value range of the lookup indices
also changes based on the mapping rule. Figure 20 (a) uses a Bucke-
tize operator for illustration. After the Bucketize, each lookup index
is mapped to a value within [0, 4). The range of propagated indices
also changes from (−∞, +∞) to [0, 4). The keep pattern, shown in
Figure 20 (b), does not change the value range of lookup indices,
such as reshape operator. The replace pattern, shown in Figure 20 (c),
replaces the lookup indices that do not meet the given condition. In
Figure 20 (c), all indices that are not ≥ 0 are replaced by 0, for which
the index value range after propagation is changed from (−∞, 4)
to [0, 4). The remove pattern, shown in Figure 20 (d), removes the
indices that do not meet the specified condition from the sparse
tensor. In Figure 20 (d), the elements in sp_values that are not ≥ 0
are removed, and the corresponding indices tuple in sp_indices are
also removed. The propagated value range is reduced to [0, 4).

By identifying the value range of each index via propagation
according to the above patterns, RECom is able to remove redundant
index operations. For example, if we have already identified that
the input range in Figure 20 (d) is [0, 4), the following remove
computation is unnecessary and can be removed. The lookup index
removal in embedding columns is usually through a subgraph of
remove or replace. Therefore, if RECom verifies that the input lookup
indices are all within the boundaries, then the following lookup
index removal is regarded as unnecessary and will be eliminated
by RECom.

In addition, RECom also merges successive remove or replace
subgraphs into one to simplify the graph and reduce the computa-
tion. For example, suppose a subgraph aiming at removing values

(a) Map. B: Bucketize. (b) Keep. Rs: Reshape.

(c) Replace. Sl: Select. (d) Remove. W: Where. 
Rs: Reshape. G: Gather.

(−∞, +∞)
B

[0, 4)
[0, 4)

Rs

[0, 4)

(−∞, 4)

Sl

[0, 4)

value >= 0 0

(−∞, 4)

[0, 4)

value >= 0

Rs

W

GG

sp_values sp_indices Condition 
Subgraph

Splat 
Constants

Figure 20: Common patterns of embedding lookup index
operations. The intervals close to the sp_values indicate their
value ranges.

≥ 0 is followed by a subgraph aiming at removing values < 4. In
this situation, RECom constructs a new subgraph whose function
is to remove values ≥ 0 or < 4 and uses this to replace the original
two subgraphs.

E DETAILED EXPERIMENTAL RESULTS
In this section, we show the detailed results of experiments per-
formed in Section 7. In Section 7.6, we present the performance
comparison with prior works, including XLA [15], AStitch [78],
HugeCTR [43], and the manually-optimized CPU solution. We only
use a batch size of 256 in that section, as the batch size in real busi-
ness is often several hundred. We present the experimental results
with various batch sizes in Tables 3, 4, and 5.

For XLA [15] and AStitch [78], we observe that their inference
latency changes are little as the batch size increases, which is similar
to TF-GPU. This is because the wave number of most GPU kernels
launched by them is far less than 1, as the analysis in Section 7.4
shows. Hence, launching more blocks for larger batch sizes does
not affect the latency significantly. Besides, the non-computation
overhead introduced by kernel launches, kernel synchronizations,
and operator scheduling is also insensitive to the batch size.

For HugeCTR [43], we only compare the kernel execution time
of the lookup procedure, as HugeCTR does not support the other
computations in embedding columns (e.g., Bucketize in index trans-
lation). As Table 4 shows, at small batch sizes, RECom outperforms
HugeCTR significantly. In contrast, at large batch sizes (1,024 and
2,048), HugeCTR achieves better performance than RECom. The
reason is that HugeCTR is mainly optimized for training scenarios
in which large batch sizes are often used. HugeCTRmaps the lookup
of one sample on all embedding tables into a thread block, which
requires large batch sizes to obtain good parallelism. In the infer-
ence scenario, the batch size distribution follows the log-normal
distribution [17], and most of the batch sizes are around several
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Table 3: Inference latency (ms) of RECom and TF baselines
as well as XLA and AStitch with microbenchmarks.

# Columns Batch Size TF-CPU TF-GPU XLA AStitch RECom

10

32 0.46 3.96 3.70 3.66 0.16
64 0.54 3.95 3.76 3.61 0.16
128 0.19 3.97 3.76 3.55 0.23
256 0.23 4.04 3.71 3.58 0.25
512 0.28 4.03 3.70 3.66 0.27
1024 0.33 4.10 3.71 4.26 0.34
2048 0.54 4.12 3.66 3.75 0.42

50

32 2.47 18.53 17.57 17.69 0.28
64 2.83 18.51 17.42 17.24 0.28
128 0.85 18.50 17.52 17.04 0.29
256 0.74 18.60 18.05 17.60 0.35
512 0.77 18.65 18.13 20.26 0.40
1024 0.86 18.94 17.57 17.91 0.50
2048 1.37 19.34 17.58 18.25 0.79

100

32 5.01 36.97 34.87 31.56 0.37
64 5.63 36.89 35.63 31.72 0.37
128 1.49 36.97 35.85 31.82 0.43
256 1.19 37.20 35.63 31.85 0.44
512 1.27 37.43 36.27 33.34 0.53
1024 1.52 38.08 35.38 33.31 0.77
2048 2.38 38.82 34.46 34.34 1.18

500

32 29.16 185.38 182.64 164.62 1.15
64 34.59 185.59 176.35 158.49 1.21
128 5.82 186.15 183.48 161.08 1.32
256 5.39 187.24 181.60 165.44 1.58
512 5.93 188.93 182.72 165.54 2.12
1024 7.30 192.13 182.84 170.53 3.26
2048 12.03 195.88 183.57 179.15 5.81

1000

32 82.18 378.77 372.23 327.33 2.15
64 62.04 376.39 375.90 323.94 2.26
128 12.81 376.96 372.84 320.12 2.53
256 13.42 379.11 376.44 321.15 3.11
512 14.60 382.01 373.44 329.03 4.22
1024 16.62 388.51 373.97 338.32 6.49
2048 32.43 396.08 371.72 346.96 11.70

Table 4: Lookup kernel execution time (`s) of HugeCTR and
RECom with microbenchmarks.

# Columns Solution Batch Size
32 64 128 256 512 1024 2048

10 HugeCTR 11.1 11.1 11.2 11.2 12.9 13.4 15.9
RECom 10.9 10.7 15.0 22.3 37.5 67.2 129.4

50 HugeCTR 43.5 43.5 43.6 43.7 51.0 66.6 92.1
RECom 13.9 13.7 19.0 30.4 52.5 99.7 201.6

100 HugeCTR 78.3 78.3 78.4 81.3 103.9 128.0 194.4
RECom 19.5 18.4 28.6 48.9 94.4 183.6 355.0

500 HugeCTR 377.8 377.9 446.6 476.6 526.3 629.9 966.5
RECom 111.3 102.8 173.8 308.5 597.8 1176.6 2364.9

1000 HugeCTR 720.6 828.4 859.5 909.4 1001.3 1261.9 1989.7
RECom 146.8 143.4 285.4 563.5 1128.8 2232.0 4098.2

hundred. As Table 4 shows, RECom achieves close or better perfor-
mance for batch sizes ≤ 512. Besides, note that we use the whole
lookup time for RECom while only using the reduction time for
HugeCTR, which is a little bit unfair for RECom.

As shown in Table 5, the manually optimized CPU solution with
avx512 support outperforms the TF-CPU by 2.90× on average across
different batch sizes. By utilizing the GPU’s high computing power

and high bandwidth, RECom achieves a higher average speedup of
5.76× than this manually optimized solution.

Table 5: Inference latency (ms) of TF-CPU, manually-
optimized CPU, and RECom.

Model Solution Batch Size
32 64 128 256 512 1024 2048

A
TF-CPU 117.2 100.5 76.6 43.8 62.0 99.3 184.7

Manual-Opt 19.4 18.6 22.9 28.3 39.7 82.6 148.9
RECom 8.2 9.9 13.7 21.2 39.4 69.4 133.1

C
TF-CPU 70.8 54.9 40.4 23.0 23.1 28.8 53.0

Manual-Opt 10.2 9.9 12.1 14.0 17.2 21.9 38.0
RECom 4.3 4.5 4.8 5.8 8.2 14.4 28.3

D
TF-CPU 96.6 83.7 54.5 31.2 31.6 35.3 54.8

Manual-Opt 15.9 16.5 19.6 21.8 24.7 29.8 48.2
RECom 7.9 8.6 9.2 10.6 12.2 19.0 38.4

F ARTIFACT APPENDIX
F.1 Abstract
The artifact contains the necessary software components to validate
the main results in the RECom paper. We provide a Dockfile for
users to build the docker image containing the basic environment
used to compile RECom. After launching the docker container, users
can pull the GitHub repository of RECom and then build and run
the examples. We provide a run-all script to perform building the
docker image, building RECom and the examples, creating models E
and F in Section 7, running the benchmark scripts, and drawing the
most important figures in the paper.

F.2 Artifact check-list (meta-information)
• Run-time environment: A Linux system with NVIDIA driver
(capable of running CUDA 11.6).
• Hardware: An x86_64 CPU with at least 32 cores and an NVIDIA
T4 GPU are recommended.
• Execution: Run a single script.
• Metrics: End-to-end latency and throughput.
• Output: Two figures in PDF format showing the performance
results of RECom and TensorFlow baselines.
• Experiments: The end-to-end performance comparison of RECom
and TensorFlow baselines on the open-source models E and F.
• How much disk space required (approximately)?: 32 GB.
• How much time is needed to complete experiments (approxi-
mately)?: Six hours.
• Publicly available?: Yes. RECom’s source code is publicly available
at https://github.com/AlibabaResearch/recom.
• Code licenses (if publicly available)?: Apache-2.0
• Data licenses (if publicly available)?: Apache-2.0
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.8379746

F.3 Description
F.3.1 How to access. We provide the Dockfile and the run-all
script run_all.sh under the AE directory of RECom’s repository.
URL: https://github.com/AlibabaResearch/recom/tree/main/AE. We
also zip the source codes into one file and publish it on Zenodo:
https://doi.org/10.5281/zenodo.8379746.

https://github.com/AlibabaResearch/recom
https://doi.org/10.5281/zenodo.8379746
https://github.com/AlibabaResearch/recom/tree/main/AE
https://doi.org/10.5281/zenodo.8379746
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F.3.2 Hardware dependencies. An x86_64 CPU with at least 32
cores and an NVIDIA T4 GPU are recommended.

F.3.3 Software dependencies. A Linux system with NVIDIA driver
(capable of running CUDA 11.6).

F.3.4 Models. The run-all script includes creating the models E
and F used in our evaluation.

F.4 Installation
Users just need to pull the GitHub repository of RECom and ex-
ecute the run-all script. Note: if the compute capability of the
GPU is not 7.5 or 8.6, please modify the environment variable of
TF_CUDA_COMPUTE_CAPABILITIES in the Dockerfile correspond-
ingly before running the script.
git clone \

https :// github.com/AlibabaResearch/recom \
recom

cd recom/AE && ./ run_all.sh

Alternatively, users can download the tar file through Zenodo
to get the archived repository.

F.5 Evaluation and expected results
After finishing the execution of the run-all script, users can find
two figures, latency.pdf and throughput.pdf, in their current
directories. These two figures correspond to Figures 10 and 11 in
the paper.
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