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Abstract

Graph Neural Network (GNN) has emerged as an important

workload for learning on graphs. With the size of graph

data and the complexity of GNN model architectures in-

creasing, developing an efficient GNN system grows more

important. As GNN has heavy neural computation work-

loads on a large graph, it is crucial to partition the entire

workload into smaller parts for parallel execution and opti-

mization. However, existing approaches separately partition

graph data and GNN operations, resulting in inefficiency and

large data movement overhead.

To address this problem, we presentWiseGraph, a GNN

training framework exploring the joint optimization space of

graph data partition and GNN operation partition. To bridge

the gap between the two classes of partitions, we propose a

workload abstraction tailored to GNN, 𝑔Task, which can not

only describe existing GNN partition strategies as special

cases but also exploit new optimization opportunities. Based

on 𝑔Tasks, WiseGraph effectively generates partition plans

adaptive to input graph data and GNN models. Evaluation

on five typical GNN models shows that WiseGraph out-

performs existing GNN frameworks by 2.04× and 2.22× for

single and multiple GPU training. WiseGraph is publicly

available at https://github.com/xxcclong/CxGNN-Compute/.

CCS Concepts: ·Computer systems organization→ Het-

erogeneous (hybrid) systems; · Computing methodologies

→ Artificial intelligence.
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1 Introduction

Graph Neural Network (GNN) has shown promising results

in graph-based learning applications while obviating the

burdens of manual feature selection or extraction. GNN is

becoming a dominant approach for learning applications on

graph data, such as social networks [25, 26], recommendation

systems [14], molecule structures [13, 46], and knowledge

graphs [36, 51].

Unlike classic Deep Neural Networks (DNN), GNN com-

prises not only dense tensors but also sparse graph data.

The input of a GNN typically consists of a graph contain-

ing sparse edge connections between vertices, along with

dense embedding vectors on vertices and weight parameters

from the model itself. Each vertex in the graph carries an

embedding vector with a length of hundreds or thousands.

To learn from both sparse and dense data, graph convolution

is applied in GNNs, which typically consists of two key op-

erations: indexing operations and neural network operations

(neural operations for short). As shown in Figure 1(a), index-

ing operations are used to fetch embeddings from source

vertices along graph edges, and then neural operations, such

as MLP [15] and Attention [40], are performed to encode

the fetched data. At last, the encoded data is reduced to the

destination vertex. These operations are organized as a data

flow graph (DFG).

As GNN has heavy neural computations on a large graph

structure, to efficiently train it with accelerators, such as

GPUs, it is crucial to partition the entire workload into

smaller parts for parallel execution and optimization. With

regard to partition strategies, previous solutions can be cate-

gorized into two main types [47].

The first type is tensor-centric approach [11, 26, 28],

shown in Figure 1(b). In this approach, indexing operations

are used to fetch vertex embeddings according to graph data
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Figure 1. The comparison between the approaches of exist-

ing work and ours. (a) illustrates GNN computation. Tensor-

centric approach (b) partitions operations but regards graph

data as a whole. Graph-centric approach (c) partitions graph

data but does not partition operations.𝑔Task-based approach

(d) jointly partitions graph data and operations.

and then produce a dense tensor residing in the GPU mem-

ory. Subsequently, a neural operation is executed on this

dense tensor. The tensor-centric approach partitions these

operations into separate GPU kernels to execute. As these

operations work on dense tensors, this approach can achieve

high efficiency. However, partitioning all operations into

separate kernels can result in significant overhead for data

movement and memory consumption (see ğ2.2).

The second type is a graph-centric approach that parti-

tions graph data into multiple parts based on certain rules

and maps them to different execution units on GPU, shown

in Figure 1(c). For example, vertex-centric [47] and edge-

centric [58] approaches partition graph data according to

destination vertices and edges respectively. As the graph is

partitioned into a number of fine-grained parts, data move-

ment among operations can be reduced by executing all

operations within a single GPU kernel. However, current

partitions do not consider the operations, resulting in poor

parallelism and low efficiency of neural operations.

The fundamental limitation of existing approaches is the

separate partition of graph data and operations while ignor-

ing their joint optimization space. Moreover, conventional

partition methods are non-adaptive: they use the same par-

tition method for different graphs and operations, ignoring

either the complexity of graph data or the diversity of opera-

tions. In this work, we propose to adaptively explore the joint

partition space of graph data and operations. Compared to

the previous separate partition space, our joint approach con-

stitutes a significantly larger optimization space. As shown in

Figure 1(d), we can partition both graph data and operations

simultaneously to generate new execution plans.

To explore the joint partition space, we present WiseG-

raph, a GNN training framework that co-optimizes GNN

with regard to graph data and operations. It bridges the par-

tition of graph data and operations through 𝑔Task, which is

a workload abstraction with a subset of edges partitioned

from graph data and an operation partition plan. WiseG-

raph utilizes the information of operations to generate a

set of graph partition plans, which batch edges sharing sim-

ilar patterns in operation execution. After graph partition,

WiseGraph leverages 𝑔Task-level data patterns to optimize

GNN operations at different levels and generate candidate

operation partition plans. Finally,WiseGraph jointly opti-

mizes with the partitions of graph data and operations by

matching a graph partition plan with operation partition

plans. InWiseGraph, the main components are described

below.

Operation-aware graph data partition. Existing graph-

centric approaches partition graph data solely based on

graph structure, which can result in low efficiency for oper-

ations, as they overlook other graph data that can also have

a great impact on the performance. To address this, we pro-

pose operation-aware graph data partition, which identifies

all graph attributes related to memory access in operations

and considers them comprehensively when generating graph

partition plans and 𝑔Tasks. Therefore, it can cover existing

graph partition plans while discovering other new ones.

Data-pattern-aware operation partition. Existing ap-

proaches statically partition operations: they either fuse all

operations into one kernel or put them into separate kernels,

ignoring the patterns of graph data. However, graph data

patterns can significantly influence performance. To address

this, we propose data-pattern-aware operation partition by

exploring 𝑔Task-level data patterns from graph partition

plans. InWiseGraph, there are three key steps for operation

partition. It first changes operation organization by trans-

forming the DFG of GNN model. The second is to partition

operations into different kernels. The last step is to map op-

erations to different devices for multi-device training. The

steps are enabled by the crucial data patterns revealed with

𝑔Tasks.

Joint optimization of graph and operation partition.

With the above techniques exploring the space to partition

graph data and operations, WiseGraph generates a number

of graph and operation partition plans. For joint optimization,

it is infeasible to try all the operation partition plans for ev-

ery𝑔Task due to large graph size. To address this, we propose

differentiated joint strategy. For each graph partition plan,

we identify those outlier 𝑔Tasks that are significantly influ-

enced by the irregularity of graph data. Then we separately

select operation partition plans for them and reschedule their

execution priority and resource.
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To summarize, WiseGraph made the following contribu-

tions.

1. WiseGraph proposes a new joint optimization space

for graph data and operations in GNN,which co-considers

graph partition and operation partition;

2. WiseGraph designs 𝑔Task as the workload abstrac-

tion for joint partition, which reveals graph data

patterns for operation optimization while assigning

suitable operation partition plan to individual tasks on

graph;

3. WiseGraph develops an end-to-end workflow to par-

tition graph data, optimize operation partitions with

data patterns, and search for performant execution

plans;

4. This paper presents extensive experiments and results

show that WiseGraph gains speedup of 2.04× and

2.27× over state-of-the-art GNN systems on five mod-

els on single-GPU and multi-GPU scenarios respec-

tively.

2 Background and Motivation

2.1 GNN Basis

GNN inputs. GNN models work on both sparse and dense

data. The sparse part is a graph with vertices 𝑉 and edges 𝐸.

As shown in Figure 2(a), the graph is represented by an adja-

cency matrix with edge attributes. Typical edge attributes

include 𝑠𝑟𝑐-𝑖𝑑 and𝑑𝑠𝑡-𝑖𝑑 , which indicate the IDs of the source

and destination vertex connecting to the edge. There can be

more edge attributes illustrating other properties of graph

data. In this example, 𝑒𝑑𝑔𝑒-𝑡𝑦𝑝𝑒 distinguishes the type of the

connection. The vertices carry pre-learned or learnable em-

bedding vectors ℎ with a length of 𝐹 . The vertex embeddings

are usually represented by a dense tensor with the shape

of [|𝑉 |, 𝐹 ]. Besides the graph data and vertex embeddings,

there are also dense weight parameters in the model that get

updated iteratively during training.

GNN operations.With both sparse and dense input data,

the computation in GNN models is also in combination of

sparse and dense, which corresponds to two types of opera-

tions, indexing andneural operations. Shown in Figure 2(b),

indexing operations move data according to graph structure,

e.g., moving embedding vectors from source vertices to the

connected edges. As the graph structure is irregular, index-

ing operations are sparse computations. Another type is

neural operations, which encode vertex embeddings using

weight parameters. The neural operations are inherited from

the deep neural network (DNN), which includes both light-

weight computations such as element-wise operations and

heavy computations such as MLP [15], Attention [39], and

LSTM [16]. In Figure 2(b), an MLP operation encodes embed-

ding ℎ with weight parameter𝑊 . As neural operations are

dense computations, their performance is sensitive to data

locality and parallelism.
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Figure 2. Illustration of input data (a), operations (b), and

DFG (c) for GNN training.

Data flow graph (DFG) of GNN. There are many opera-

tions in a GNN model, which is usually represented by a

DFG to describe their dependence. A GNN model has multi-

ple layers. In each layer, indexing and neural operations are

intertwined, which makes GNN models different from DNN

models or graph computing: Embeddings are transmitted

according to the graph by indexing operations, while neural

operations are performed on the transmitted data. We use

RGCN [34], a popular GNN model, as an example for all fol-

lowing illustrations. The computation of RGCN at layer 𝑙 is

shown in Equation (1), and its DFG is depicted in Figure 2(c).

It performs MLP on the source vertex feature (ℎ𝑙 ) indexed

by the edge’s source vertex ID (𝑒𝑑𝑔𝑒.𝑠𝑟𝑐-𝑖𝑑) and the weight

parameter (𝑊 𝑙 ) indexed by the edge’s type (𝑒𝑑𝑔𝑒.𝑡𝑦𝑝𝑒). Af-

ter that, it reduces computation results to destination vertex

features (ℎ𝑙+1) indexed by destination vertex ID (𝑒𝑑𝑔𝑒.𝑑𝑠𝑡-𝑖𝑑).

ℎ𝑙+1𝑒𝑑𝑔𝑒.𝑑𝑠𝑡_𝑖𝑑+=MLP(ℎ𝑙𝑒𝑑𝑔𝑒.𝑠𝑟𝑐_𝑖𝑑 ,𝑊
𝑙
𝑒𝑑𝑔𝑒.𝑡𝑦𝑝𝑒 ) (1)

2.2 Motivation

To execute the operations of GNN models, graph-centric [42,

43, 47] and tensor-centric [11, 26] approaches partition graph

data and operations differently. Graph-centric approaches

partition the graph data into a number of fine-grained parts

and execute operations for each part in one GPU kernel.

Tensor-centric approaches regard the graph data as a whole

and use multiple GPU kernels to execute different operations,

which is due to the distinct pattern of indexing and neural

operations. They process each partition of graph data and

operations separately, ignoring the joint optimization space

between them.

We elaborate on the main limitations of graph-centric and

tensor-centric approaches. Graph-centric (vertex-centric or

edge-centric) approaches have low computation efficiency,

especially with complex neural operations in GNN model.

Figure 3(a) shows the compute/memory ratio for the graph-

centric approach on models with different neural operations.
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While they are close to the theoretically optimal ratio for

simple neural operations (Addition), the gap becomes larger

with more complex operations, such as MHA (multi-head

attention) and MLP. As a result, graph-centric approach with

MLP as neural operation can only reach 1%1 of the peak

performance of GPU. On the other hand, tensor-centric has

large redundancy due to graph data. Figure 3(b) shows the

normalized execution time breakdown for these models us-

ing tensor-centric approaches. The time of executing neural

operations (Neural) is less than 40%, while most of the time

is spent on indexing operations to move data (Other) in

GPU global memory. Though it has high neural computation

efficiency, the tensor-centric approach is still inefficient due

to large redundancy of global memory data movement.

3 End-to-end Workflow of WiseGraph

WiseGraph is a GNN framework that explores the joint op-

timization of graph partition and operation partition, which

enables a larger optimization space for GNN models. 𝑔Task

is the basis for WiseGraph, which is a workload abstrac-

tion with a subset of edges partitioned from graph data and

an operation partition plan. With 𝑔Task, WiseGraph can

adaptively generate graph partitions according to both GNN

model and graph data, while reveal fine-grained data patterns

for operation partition and optimization. The end-to-end

workflow of WiseGraph is shown in Figure 4.

The first step of WiseGraph is to generate graph parti-

tion plans for 𝑔Tasks based on graph data and GNN model

in Figure 4(a). Figure 4(b) shows multiple generated parti-

tion plans: in an adjacency matrix, edges in the same color

are partitioned to the same 𝑔Task. WiseGraph can find and

try various graph partition plans, which opens up a large

space for graph partition. By comparison, previous work stat-

ically sets a fixed graph partition plan, such as vertex-centric

partition. WiseGraph achieves that by identifying the edge

attributes that are critical to computation efficiency in graph

data and then partitioning the graph data into 𝑔Tasks by

applying restrictions on the selected edge attributes.

1Measured on OGBN-Arxiv, using dense matrix multiplication as the peak
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Figure 4. End-to-end workflow of WiseGraph.

The second step is to generate pattern-aware operation

partition plans for𝑔Tasks. We find that a graph partition plan

with certain restrictions on edge attributes reveals 𝑔Task-

level data patterns. Shown in Figure 4(c), we find three typical

types of data patterns. The first is duplicated data, which

is about how data is duplicated and leads to computation

sharing in a 𝑔Task. The second is batched data, as there

can be a large amount of unique data to be batched for a

𝑔Task. The third is changing data volume, which is the pat-

tern describing how data volume (size of tensors) changes

with operations. Shown in Figure 4(d), these data patterns

correspond to three steps of operation partition: With du-

plicated data, WiseGraph enhances computational sharing

through DFG transformation; With batched data, WiseG-

raph generates efficient kernels to process multiple edges

in parallel; With changing data volume,WiseGraph deter-

mines an operation placement strategy to scale multi-device

training.

Finally, as shown in Figure 4(e), WiseGraph jointly op-

timizes with both graph and operation partitioning plans.

WiseGraph matches the 𝑔Tasks with different operation

partition plans by distinguishing outlier 𝑔Tasks from regular

𝑔Tasks. The resulting execution plan can better tackle the

irregularity of the graph data for better efficiency.

4 Generating Graph Partition Plans

We first explore the search space for graph partition plans.

We take the properties of the GNN model into consideration

and only explore graph partition plans that largely influence

the execution efficiency of the GNN model. To find out such

graph partition plans, our core idea is to analyze the GNN

model to first identify the edge attributes that are critical to

performance and then apply a series of rules (restrictions) on

these attributes to generate different graph partition plans

in a unified way.
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4.1 Identifying Key Attributes from GNN Models

Shown in Figure 5(a), the input graph can be represented by

multiple edge attributes. For each edge, its ID is indicated

by 𝑒𝑑𝑔𝑒-𝑖𝑑 ; 𝑠𝑟𝑐-𝑖𝑑 and 𝑑𝑠𝑡-𝑖𝑑 describe the vertex IDs it is

connected to; 𝑒𝑑𝑔𝑒-𝑡𝑦𝑝𝑒 represents its type.

WiseGraph identifies the key attributes according to the

GNN model. Shown in Figure 5(b), a GNN model is repre-

sented with a DFG, including indexing and neural operations,

as well as the input and output tensors. In the DFG, an in-

dexing operation takes edge attributes as input to read/write

the tensor pointed by them, and then produces tensor that is

used by other operations. The values of these edge attributes

determine memory access and computation patterns of the

current and subsequent operations. Therefore, these edge

attributes are the key factors that influence computation

performance, we call them as indexing edge attributes, or

indexing attributes for short.

WiseGraph identifies these indexing edge attributes by

analyzing indexing operations in a GNN model. In this ex-

ample, three indexing edge attributes, i.e., 𝑠𝑟𝑐-𝑖𝑑 , 𝑒𝑑𝑔𝑒-𝑡𝑦𝑝𝑒 ,

and 𝑑𝑠𝑡-𝑖𝑑 , will be used in the following graph partition.

4.2 Applying Restrictions on Edge Attributes

With the indexing edge attributes identified fromGNNmodel,

the second step is to generate 𝑔Tasks and graph partition

plans. The key idea is to partition edges with the same/simi-

lar values of indexing edge attributes into a 𝑔Task. As there

are multiple indexing edge attributes to be considered for

partition, WiseGraph uses graph partition table to organize

them in unified way, and applies restrictions on them to gen-

erate graph partition plans, where edges partitioned to the

same 𝑔Task satisfy all the restrictions.

Graph partition table. The edge attributes are organized

in the graph partition table in a unified way. Shown in Fig-

ure 6, the rows of the graph partition table are the edge

attributes, which are categorized into three types: Indexing

edge attributes are used in indexing operations in the model;

Inherent attributes, such as degree of vertices, are not used

for indexing but still important for performance; Unused

attributes are not used in indexing operations, e.g. type of

source and destination vertices, therefore they are not consid-

ered in graph partition. The columns of the graph partition

table indicate the location of each edge attribute, which can

be on the edge itself, or on the destination or source vertex.

Src Dst Edge

ID 1 32
Type min
Degree N/A

...

Indexing edge a1ributes

Inherent a1ributes

Unused a1ributes

Figure 6. Graph partition table.

Restrictions.A restriction is to limit the number of unique

values in an edge attribute for edges within a 𝑔Task. For

each entry in the graph partition table in Figure 6, there

can be three types of restrictions. The first is to restrict the

number of unique values with a specific value. For example,

a restriction of 𝑢𝑛𝑖𝑞(𝑑𝑠𝑡-𝑖𝑑) = 1 means that there can only

be one unique destination vertex connected by the edges

in a 𝑔Task; 𝑢𝑛𝑖𝑞(𝑒𝑑𝑔𝑒-𝑖𝑑) = 32 means there are 32 edges

in a 𝑔Task. The second is to restrict the number of unique

values to be minimum. For example, 𝑢𝑛𝑖𝑞(𝑠𝑟𝑐-𝑖𝑑) = 𝑚𝑖𝑛

means that after satisfying other restrictions, 𝑔Tasks with a

smaller number of unique 𝑠𝑟𝑐-𝑖𝑑 are preferred. The third are

the entries with no restriction, a 𝑔Task can have unlimited

number of unique values in these edge attributes.

As shown in Figure 5(c), applying different restrictions to

indexing edge attributes can result in different graph par-

tition plans. Each partition plan generates several 𝑔Tasks

based on graph data, which will be processed in parallel by

GPU execution units. Considering the substantial scale of

the graph data, we use a greedy method for graph partition

to process graph data in a light-weight manner. It can gener-

ate the partition plan with computation complexity of 𝑂 (𝐸)

each time. We first sort the edges of the graph according to

edge attributes involved in the restrictions. Then we scan

these edges in order. If a restriction condition is satisfied after

including the current edge, we add it to the current 𝑔Task’s

graph data. If any restrictions are not satisfied after adding

the current edge, we stop the graph partition for the current

𝑔Task and start a new 𝑔Task. Note that the restrictions may

not be fully satisfied. But asWiseGraph is adopting a greedy

method that keeps adding edge until the restrictions cannot

5
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Figure 7. The adjacency matrix of graph data and graph partition plans generated from different restrictions; For each graph

partition plan, the first three 𝑔Tasks are marked with colors.

be satisfied, the tasks can still be generated. So there may be

outlier 𝑔Tasks, but they are properly handled as in ğ6.

4.3 Generated Graph Partition Plans

General space of graph partitions. Generated graph par-

tition plans can cover existing and new graph partitions.

For example, previous graph-centric approaches, such as

vertex-centric and edge-centric, can be described with graph

partition table restrictions in Figure 7(b) and (e). 2D-partition,

which is commonly used in graph computing by segmenting

the adjacency matrix into 2D grids, is represented in Fig-

ure 7(f). Other graph partition plans commonly used can

also be generated by applying restrictions to the ID of ver-

tices and edges. With the indexing attributes imported from

model, the graph partition table can find graph partition

plans that are missing from previous work. For example,

Figure 7(d) not only restricts the connected destination ver-

tex ID, but also selects edges of the same type into a 𝑔Task;

Figure 7(g) generates 𝑔Task with all edges connected to the

destination vertices with the same degree. The restriction of

min applied to edge attributes can also lead to new plans. The

example in Figure 7(h) generates 𝑔Tasks whose edges are

connected to K unique destination vertices while minimizing

the unique degrees of destination vertex. This enables Wise-

Graph to generate 𝑔Task that pads the destination vertices

with different degrees for high parallelism.

Comparison with other graph partition methods. Com-

pared with WiseGraph, the other graph partitions methods

target at clustering the vertices and minimize the edge-cut

among different vertex partitions. The representative in-

cludesMetis [23] and Rabbit [1].With the consideration of re-

dundant computation caused by shared neighbors, Betty [50]

further prioritizes partitioning vertices with more shared

neighbors into the same cluster, which is achieved by re-

defining the cost function of edge connections while apply-

ingMetis partitioning. The output of all these graph partition

methods is a reordered graph so that the vertices are clus-

tered. However, the output of WiseGraph graph partition

are 𝑔Tasks each containing several edges sharing same edge

attributes, which are the unit tasks for GNN execution. Metis-

style andWiseGraph graph partition work at different levels

and can be combined: we can first use Metis-style work to

produce the reordered graph with better locality, and then

applyWiseGraph graph partition on it to generate 𝑔Tasks

for GNN optimization and execution.

5 Generating Operation Partition Plans

After generating graph partition plans for 𝑔Tasks, Wise-

Graph generates candidate operation partition plans for

𝑔Tasks. Based on graph data patterns revealed by the 𝑔Task,

WiseGraph optimizes three key steps in operation parti-

tion, which are DFG transformation, kernel generation, and

operation placement.

5.1 𝑔Task-Level Graph Data Patterns

In graph partition plans, each 𝑔Task reveals certain data pat-

terns, which are referred to as 𝑔Task-level data patterns. The

data patterns are centered around the restriction of unique

values for edge attributes, which can be classified into the

following three types.

Duplicated data. In a 𝑔Task, by comparing the number of

unique values with the total number of edges,WiseGraph

can identify whether there is duplicated data in an edge at-

tribute. For example, given a 𝑔Task with 𝑢𝑛𝑖𝑞(𝑠𝑟𝑐-𝑖𝑑) less

than the number of containing edges, there will be dupli-

cated src-id across different edges. These duplicated values

can result in memory accesses to the same address and com-

putation performed on the same tensors.

Batched data. Batched data reflects data pattern for 𝑔Tasks

from two aspects. The first is about the number of unique

values for each edge attribute, which determines the amount

of data involved and the parallelism of 𝑔Task’s computation.

The second is the ratio comparing different edge attributes’

number of unique values. It determines the data reuse in the

computation of 𝑔Task. For example, for 𝑔Task generated

with 𝑢𝑛𝑖𝑞(𝑠𝑟𝑐-𝑖𝑑) = 32, the data indexed by 𝑠𝑟𝑐-𝑖𝑑 can form

a batch of size 32, which can be processed in parallel.

Changing data volume. For a 𝑔Task, the number of unique

indexing attributes used for data retrieval and for writing can

be different, so are the volume of input and output tensors,

leading to changing data volume. In multi-device training,

where communication is a main bottleneck, data volume in

communication can significantly impact performance. Tak-

ing 𝑔Task generated with 𝑢𝑛𝑖𝑞(𝑠𝑟𝑐-𝑖𝑑) = 32&𝑢𝑛𝑖𝑞(𝑑𝑠𝑡-𝑖𝑑) =

6
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Figure 8. DFG transformation rules for duplicated data.

2 as an example, the process leads to a reduction in the num-

ber of vertices for each 𝑔Task through computation, indicat-

ing to conduct communication subsequent to computation

for less communication workload.

5.2 DFG Transformation

When WiseGraph reveals the 𝑔Task-level pattern of du-

plicated data, it indicates which attribute values within a

𝑔Task are shared among edges, which can be used to share

and reduce computation workload. To achieve this, Wise-

Graph employs two DFG transformation rules to generate

new DFGs that leverage the duplicated data for computa-

tion workload reduction. Our method identifies and executes

the necessary computations within a 𝑔Task while ensuring

equivalent results.

Transformation 1: Unique value extraction. From the

duplicated data, it extracts the unique values by inserting

an additional indexing operation into DFG; A mapping from

unique values to duplicated data is used to perform the in-

dex operation. Figure 8(a) takes 𝑠𝑟𝑐-𝑖𝑑 as the duplicated

data for example. To extract unique values, WiseGraph

decompose 𝑠𝑟𝑐-𝑖𝑑 into its unique values (𝑠𝑟𝑐-𝑖𝑑𝑢𝑛𝑖𝑞𝑢𝑒 ) and

a tensor (𝑠𝑟𝑐-𝑖𝑑𝑚𝑎𝑝 ) storing their mapping relation. An in-

dexing operation is inserted to retrieve the original data:

𝑠𝑟𝑐-𝑖𝑑 = 𝑠𝑟𝑐-𝑖𝑑𝑢𝑛𝑖𝑞𝑢𝑒 [𝑠𝑟𝑐-𝑖𝑑𝑚𝑎𝑝 ]. This transformation intro-

duces the unique values from duplicated data into DFG.

Transformation 2: Indexing swapping. It exchanges the

execution order of the indexing operation and its subse-

quent operation. As shown in Figure 8(b), by applying index-

ing swapping, the neural operation (𝑂𝑃 ) that was executed

on the indexing operation’s output is now performed on

indexing operation’s input (𝐵). By swapping execution or-

der, WiseGraph can perform computation on the extracted

unique data. The equivalence is guaranteed as long as the

neural operation is invariant to the tensor’s dimension used

by the indexing operation. For operations with multiple in-

dexing results as inputs, WiseGraph can still perform in-

dexing swapping by merging multiple indexing operations

into a multi-dimension one (𝐼𝑛𝑑𝑒𝑥-2𝐷 in this example). In

the example from Figure 8(b), the original computation is

A[B] ⊗ C[D]. After transformation, the computation is equiv-

alent to (A ⊗ C) [B, D], which simultaneously uses both B
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Figure 9. Steps of DFG transformations for RGCN.

and D for indexing the computation result of OP. The multi-

dimensional indexing makes indexing swapping applicable

to broader cases.

WiseGraph scans the operations on the DFG in topologi-

cal order and applies transformation rules wherever possible

to obtain a new equivalent DFG. By calculating and com-

paring the workload of transformed DFGs, WiseGraph can

choose the one with the least workload as the DFG for exe-

cution.

Example. Figure 9 shows how these transformation rules

take effect on the DFG of RGCN. With 𝑔Task and its restric-

tions in (a), WiseGraph can infer that 𝑠𝑟𝑐-𝑖𝑑 and 𝑒𝑑𝑔𝑒-𝑡𝑦𝑝𝑒

have duplicated data (b). SoWiseGraph applies unique value

extraction to find out unique values from them and explicitly

represent them on the DFG (c). WiseGraph then applies

multiple steps of indexing swapping to swap execution order

between the indexing operation and its subsequent opera-

tions ((d) and (e)). After transformations, the MLP operation

in the new DFG is directly performed on the unique source

vertex embeddings andweight parameters and then produces

equivalent results by performing a 2D-indexing operation.

A large amount of computation workload for MLP is shared

among edges.

5.3 Kernel Generation

The second step of operation partition is to partition op-

erations on DFG into several kernels. If there is only one

operation mapped to a kernel, we can directly use existing

implementations from DNN frameworks. However, if there

are multiple operations partitioned into a kernel, we need

to generate efficient GPU kernel code as no off-the-shelf

implementation exists.

Existing work [18, 28, 47] can generate code to process

multiple operations in a GPU kernel for GNN. However, it is

infeasible to apply these approaches in operation partition

7
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Figure 10. Kernel generation for RGCN operations.

due to two challenges. First, the need to partition various

operations into a kernel poses a significant obstacle. Existing

code generation for GNN is limited to handling fixed work-

flows, such as Source-Edge-Aggregation workflow [28, 47],

thereby lacking the flexibility required for arbitrary opera-

tion partition. Second, achieving high parallelism is essential

for the efficient execution of neural operations. Neverthe-

less, traditional GNN code generation produces kernels that

process workload on an edge-by-edge basis, resulting in

low parallelism and performance.

To address this, WiseGraph adopts composable micro-

kernels [38] guided by the pattern of batched data. To gener-

ate kernels that can handle various operations, WiseGraph

prepares multiple micro-kernels for data loading and com-

putation, with each micro-kernel representing a specific op-

eration. By composing these micro-kernels, we can generate

a GPU kernel with operations partitioned in.

To achieve high parallelism, WiseGraph leverages the

pattern of batched data to select the implementation of micro-

kernels. These micro-kernels process data in parallel with

multiple GPU threads. Both the number of threads used and

the amount of data processed by each thread are determined

through batched data. By contrast, a micro-kernel without

the pattern of batched data can only process computation

edge-by-edge, which prevents efficient data access and data

reuse for computational workloads.

Example. Figure 10 shows an example of generating kernel

for RGCN operations (a). Shown in (b), without the pattern

of batched data, the kernel processes the 𝑔Task workload

edge-by-edge. For each edge, it loads the weight matrix 𝑤

as well as the edge’s source vertex embedding vector and

performs vector-matrix multiplication on them. In (c), with

the data pattern that edges are batched with 4 unique src-id

in a 𝑔Task,WiseGraph generates a GPU kernel that loads

4 vertex embeddings simultaneously. After that, the kernel

performs matrix-matrix multiplication on them and updates

the destination vertices according to𝑑𝑠𝑡-𝑖𝑑 . The performance

improvement comes from two aspects. The first is the data

reuse: the loaded data of weight matrix is reused for 4 times

compared to only one time in non-batched implementation.

Second, more efficient hardware resources, i.e., tensor-core,

are used for matrix multiplication.

5.4 Operation Placement

Multi-device training. In multi-device training for large

graphs, the vertex embeddings should be partitioned to mul-

tiple devices due to limited per-device memory capacity. For

every layer of GNN, each device stores part of source vertex

embeddings and is responsible for computing part of des-

tination vertex embeddings. Shown in Figure 11(a) and (b),

there are two ways to partition embeddings into devices, ei-

ther at vertex dimension (𝑉 ) or embedding dimension (𝐸𝑚𝑏),

which corresponds to data parallel [3, 32, 42] and tensor

parallel [12] training. For vertex dimension partition and

data parallel training, the embeddings of different vertices

are partitioned to different devices. For embedding dimen-

sion partition and tensor parallel training, each device holds

all vertices’ parts of the embedding. To perform operations

on partitioned embeddings, the distributed implementation

is needed, which involves not only computation but also

communication to prepare necessary data. For data parallel

execution in (a), the indexing operation requires all-to-all

communication because some vertices are not stored locally.

On the other hand, for tensor parallel, the neural operation

requires additional communication. For the example in (b),

MLP needs the communication operation of reduce-scatter to

generate complete results. As communication bandwidth is

lower than computation throughput, communication can be

a training bottleneck. Therefore, reducing communication

workload is important for multi-device GNN training and is

considered by WiseGraph in operation partition.

Operation placement. An important property is observed

from these communication operations: they either move or

reduce data, thus the execution order of communication and

computation can be switched while producing equivalent

results. For example, instead of transmitting data to local

devices and performing computations on them, we can per-

form computations on the data before transmitting data to

local devices. By changing the execution order, operation

placement is shifted from local devices to remote devices

and the communication workload changes from the opera-

tion’s input to output. Due to the changing data volume, the

amount of communication data is also changed. WiseGraph

determines the placement of operations by considering the

changing data volume of each operation on the DFG. The cal-

culation considers the changing data volume at both vertex

and embedding dimensions.

Example. Figure 11(c) and (d) show the example to change

operation placement for data and tensor parallel. For data

parallel in (c),WiseGraph takes into account the changing

data volume and, if the volume decreases at the embedding

dimension, it will place the MLP on device 1 by performing

8
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Figure 11. Parallel strategies and operation placement of

RGCN.

all-to-all on the MLP output. For tensor parallel in (d), Wise-

Graph will place index-add on all devices given that data

volume decreases at vertex dimension with it.

Comparison with other parallelization approaches. Nu-

merous parallelization techniques and their combinations

have been proposed for the training DNNs [20, 33, 35, 56],

where tensors and computations are both dense. The de-

termination of an optimal strategy, encompassing tensor

partitioning methods, involves either solving [35] or explor-

ing [56] potential solutions. In contrast, the efficiency of

multi-device GNN training is significantly influenced by the

characteristics of input graph data, necessitating a strategy

that also accounts for these data attributes. DistDGL [55]

introduces a data parallel approach to graph data processing,

employing all-to-all communication to aggregate necessary

vertex features across workers. Meanwhile, PipeGCN [41]

implements pipeline parallelism to reduce communication

overhead, and 𝑃3 [12] leverages tensor parallelism for the in-

put layer before switching to data parallelism for subsequent

layers for better communication efficiency. Although these

methods are capable of processing graph data during execu-

tion, they fail to optimize strategy setting based on graph

data characteristics. Consequently, this leads to consider-

able redundancy and variable speed enhancements across

different graph structures.

6 Joint Optimization

After generating graph partition plans (ğ4) and operation

partition plans (ğ5), we need to jointly optimize with them

for efficient execution. The key problem is as follows: given

a graph partition plan and a set of operation partition plans,

how to identify an execution plan that minimizes the exe-

cution time. Due to graph irregularity, applying the same

operation partition plan to generated 𝑔Tasks can result in

a mismatched and inefficient execution. On the other hand,

for a large graph, it is infeasible to try different operation

partition plans for every 𝑔Task. Thus, for joint optimization,

WiseGraph should find a light-weight approach to process

large graphs while tackling their irregularity.

We observe that, after partitioning graph data into a num-

ber of𝑔Tasks, most of𝑔Tasks are similar (regular𝑔Task), with

some outlier 𝑔Tasks due to the irregularity of graphs. This is
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Figure 12. Differentiated scheduling of outlier 𝑔Tasks.

due to the power-law distribution of graph data [7, 10, 59]:

most of the vertices have a moderate degree, and the 𝑔Tasks

generated from them have similar number of edges and

unique edge attribute values. So instead of selecting an oper-

ation partition plan for every 𝑔Task, we can identify regular

and outlier 𝑔Tasks and select one for each type separately,

which largely reduces the complexity of joint optimization.

6.1 Outlier 𝑔Task Identification

To identify the outliers from generated 𝑔Tasks, we categorize

the outlier 𝑔Tasks into the following three types.

Underfill𝑔Task: Insufficient number for restricted edge

attributes. The restriction from 𝑔Task’s graph partition ta-

ble has a preset number of unique values. However, it is

possible that there is not enough data to reach the restric-

tion. For example, 𝑔Task restricting dst-id=1&edge-id=K can

have underfill 𝑔Tasks containing a destination vertex with

less than 𝐾 adjacent vertices. A significant amount of idle

time and resource underutilization may be incurred due to

these underfill 𝑔Tasks.

Overfill𝑔Task: Extremely large number of unrestricted

edge attributes. For an unrestricted indexing attribute, a

𝑔Task can have a much larger number of edges than other

𝑔Tasks and becomes an overfill 𝑔Task. In RGCN example, re-

striction src=K&edge-type=1 can result in overfill𝑔Tasks with

high-degree source vertices grouped into the same 𝑔Task.

Overfill 𝑔Task can lead to severe load imbalance.

𝑔Task with frequent values: Edge attributes frequently

appear in many 𝑔Tasks. Some values of indexing edge

attributes can frequently appear in a large number of 𝑔Tasks.

Taking restriction dst-id=1&edge-num=K as an example, the

𝑑𝑠𝑡-𝑖𝑑 of a high-degree vertex will appear in multiple 𝑔Tasks,

as each of𝑔Tasks only holds𝐾 edges connected to this vertex.

There can be data races for 𝑔Tasks with frequent values,

which further results in low memory efficiency.

6.2 Differentiated Outlier 𝑔Task Scheduling

After identifying the outlier 𝑔Tasks,WiseGraph reschedules

computation resource and execution priority for them to

address the resulting resource inefficiency and workload

imbalance.

9
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WiseGraph changes computation resource assigned to

the outlier 𝑔Tasks according to their types. Shown in Fig-

ure 12(a), underfill 𝑔Tasks have a redundant workload due to

the assumption of batched data. WiseGraph further breaks

these 𝑔Tasks into individual edges and performs edge-wise

computation on them to eliminate the redundancy. For the

overfill 𝑔Tasks in (b),WiseGraph allocates more computa-

tion resource for them by launching a separate GPU ker-

nel that increases thread blocks and shared memory size.

For 𝑔Tasks with frequent values in (c), WiseGraph extracts

common workloads shared by them and computes them in

advance. After that, the execution of these 𝑔Tasks only needs

to fetch the pre-computed data for these frequent values.

Besides adjusting computation resource, WiseGraph also

reschedules the execution order for the outlier 𝑔Tasks, which

is based on the amount of workload. Imbalanced workload

results in long-tail effect: shown in (b), the overfill 𝑔Tasks

still reside on execution units while other execution units are

idle. Increasing the priority of execution for overfill 𝑔Tasks

can lead to a more balanced workload. In reserve, shown

in (a), running edge-wise computation for underfill 𝑔Tasks

with lower priority can also balance workload.

6.3 Strategy Selection

WiseGraph searches operation partition plans for regular

and outlier 𝑔Tasks respectively, measures execution time,

and selects one with the least execution time. To reduce the

tuning overhead,WiseGraph applies the following methods.

The first is pruning. There can be many inefficient execu-

tion plans not worth trying in random search.WiseGraph

prunes these execution plans using a cost model. The cost

model comprises three essential components: computation

workload, memory access volume, and parallelism. The com-

putation workload is determined by analyzing floating-point

operations (FLOP) based on the operation type and input data

size. Memory access amount is calculated by considering the

shape of input tensors. Parallelism is estimated in relation to

the number of 𝑔Task. Inefficient execution plans (e.g., a large

amount of workload or low parallelism) will be ruled out

without testing. The second is caching.WiseGraph caches

parameters and generated kernel for the same configuration

to avoid repeated compilation and testing of GPU kernels.

The third is efficient graph data processing. After setting

the restrictions for 𝑔Tasks, the organization of graph data

should be changed accordingly. CPU processing will become

the bottleneck for large graph data.WiseGraph processes

graph data in parallel using GPU, which can largely reduce

overhead.

Workingwith sampled graph training.WiseGraphmainly

targets at full graph training. However, besides training with

a full graph, sampled graph training is also a promising train-

ingmethod for GNN, which generates a subgraph from graph

data at each iteration. Compared with the full graph training,

the graph data changes at every iteration, making costly

Table 1. Evaluated graph datasets. Dim.: dimension of input

vertex embedding; #Class: number of classification results

Dataset #Vertices #Edges Dim. #Class

S
in
g
le

G
P
U Arxiv (AR) 169K 2.3M 128 40

Products (PR) 2.4M 123M 100 47

Reddit (RE) 233K 114M 602 41

Papers-sample (PA-S) 1.2M 1.5M 128 172

FriendSter-sample (FS-S) 1.4M 1.6M 384 64

M
u
lt
i

Papers (PA) 111M 1.6B 128 172

FriendSter (FS) 66M 3.6B 384 64

parameter tuning on graph data impractical. To make Wise-

Graph’s optimizations appliable to sampled graph training,

we observe that, given graph data and a sampling method,

the sampled subgraphs share a similar pattern and adapt to

the same set of parameters [14, 21, 53]. Therefore, WiseG-

raph first tunes the parameters on multiple sampled sub-

graphs, and then applies the optimal graph and operation

partition plan to all other sampled graphs without tuning.

The graph processing according to the graph partition plan

is performed together with graph sampling, which is per-

formed asynchronously on CPU. WiseGraph is unable to

tackle the situation where graph structure changes dramati-

cally at every iteration. However, current training methods

on sampled/evolving graphs have similar graphs among it-

erations [5, 6, 21, 60].

7 Evaluation

In this section we aim to evaluate the following points:

• Can WiseGraph improve the end-to-end training per-

formance of GNN while preserving model accuracy?

• How do WiseGraph’s designs, i.e., graph partition,

operation partition, and joint optimization, contribute

to performance improvement?

• Can WiseGraph generate 𝑔Tasks and optimize execu-

tion plans in acceptable run time?

• What are the best 𝑔Tasks found for each GNN model?

7.1 Experimental Setup

Dataset.We evaluate the efficacy of WiseGraph on seven

datasets shown in Table 1 collected from GNN benchmark

Open Graph Benchmark (OGB) [17] and other sources [25,

49]. Five graph datasets with moderate size are for single-

GPU training. Among them, two datasets (PA-S and FS-S) are

sampled from large graphs (PA and FS) using a seed vertex

size of 1000 and a fan-out of 20-15-10. Two larger datasets

(PA and FS) with billions of edges are for multi-GPU training.

Models.We use five models in the evaluation: RGCN [34],

GAT [40], SAGE-LSTM [14, 16], SAGE [14], and GCN [24].

Each model has three layers with hidden dimension at 256,

which is a typical setting [4, 17, 52, 57] to achieve high ac-

curacy. For multi-GPU full graph training, the hidden di-

mension is set as 32 to avoid memory issues [3, 44]. RGCN,
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Figure 13. Comparison of per-iteration execution time (ms) with other frameworks on different models. X-axis are different

frameworks and their partition method (Tensor-centric (T), Graph-centric (G), and 𝑔Task-based (gT)); Y-axes are different

datasets; Lower numbers (lighter colors) are better. White blocks represent the out-of-memory error.

GAT, and SAGE-LSTM perform complex neural computa-

tions (MLP, Attention, and LSTM), while SAGE and GCN

simply perform addition as the neural computation.

Hardware and environment. We evaluate WiseGraph on

a server with four NVIDIA Tesla A100-PCIe GPUs and two

AMD EPYC 7742 64-Core processors. All experiments run

with CUDA 11.7, NCCL [30] v2.11.4, PyTorch [31] 2.0.1.

Experiment configuration. For single-GPU performance

test, all data (graph data, vertex embeddings, and weight

parameters) are stored on GPU memory. We measure the

time of computation for each training epoch. For multi-GPU

performance test, vertex embeddings are stored on different

devices and managed by GNN systems. The measured exe-

cution time includes computation and communication time

using four GPUs. The execution time is measured by aver-

aging 100 iterations. For the accuracy test, we set the same

accuracy-related hyper-parameters for different systems.

Baselines.We compareWiseGraph with a wide range of

GNN systems. For single-GPU training, we compareWise-

Graph with PyG@2.5 [11], DGL@1.0.0 [42], GNN-Advisor

(GNNA) [43], SeaStar [47], and TC-GNN [45]. Among them,

DGL uses both graph-centric and tensor-centric approaches

depending on the type of GNN model; PyG is tensor-centric

while the others are graph-centric. For multi-GPU training,

we compare to DGL [42], ROC [22], DGCL [3], MGG [44]

on full graphs, and with an emulated version of 𝑃3 [12]

which targets at sampled graph training. 𝑃3 is emulated

by reproducing the hybrid parallelism as mentioned in the

paper, which includes the tensor parallel for the first layer

and data parallel for the other layers.

7.2 Overall Performance

Single-GPU training. Figure 13 shows the epoch time for

single GPU training.WiseGraph can achieve 2.04× improve-

ment over state-of-the-art systems on average, which is

2.64× for models with complex neural operations (RGCN,

GAT, SAGE-LSTM) and 1.13× for the other simple models

that are well optimized. AndWiseGraph is more memory-

efficient and can run complex models on large graphs. From

Table 2. Multi-GPU training epoch time in seconds

Datasets DGL ROC DGCL 𝑃3
WiseGraph

PA 23.12 14.95 26.31 N/A 5.98

FS 16.068 12.56 21.63 N/A 6.18

PA-S 30.95 N/A N/A 37.57 15.34

FS-S 7.39 N/A N/A 2.80 1.71

Figure 13(a) and (b), by comparing two tensor-centric ap-

proaches (PyG andDGL) and graph-centric approach (SeaStar),

we find that the graph-centric approach is more memory-

efficient, while tensor-centric suffersmore from out-of-memory

(OOM) on graph datasets with a large number of edges. How-

ever, tensor-centric is faster than graph-centric due to better

neural computation efficiency, but it still introduces redun-

dancy.WiseGraph co-considers graph data and neural op-

erations with 𝑔Task, which achieves high parallelism while

eliminating redundancy. Figure 13(d) and (e) show perfor-

mance for GNN models using element-wise operations as

neural computation. The graph-centric approaches are more

effective than tensor-centric ones on these models, as the

neural efficiency is less important and data movement is the

main bottleneck. For these models, WiseGraph partitions

𝑔Task with a balanced workload when performing optimiza-

tions for kernel generation, so it still achieves a speedup of

1.13×.
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Figure 14. Accuracy comparison between DGL and WiseG-

raph

Multi-GPU training. Table 2 shows the epoch time for

multi-GPU training on four GPUs connected via PCIe-4.0.
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Figure 15. Vertex-centric partition and different 𝑔Task-based graph partitions adaptive to GNN models.

To perform full-graph training on PA and FS, using Wise-

Graph can achieve 2.27× speedup over the best of other

systems. For sampled-graph training on PA-S and FS-S, an

epoch will train all vertices in the training set.WiseGraph

can always achieve the best performance and shows 1.83×

speedup. While the hybrid parallelism selected by 𝑃3 some-

times shows lower performance than the naive data parallel

used by DGL. We also compareWiseGraphwith MGG [44]

for full graph inference, as MGG currently only has forward

implementation. Inferring labels for all vertices on PA takes

8.71 seconds with WiseGraph while 25.24 seconds with

MGG. The speedup of 2.90× comes fromWiseGraph’s oper-

ation placement strategy and more efficient computation.

Accuracy test. Figure 14 shows the test accuracy that DGL

andWiseGraph can achieve. For a fair comparison,Wise-

Graph follow the same hyper-parameters from DGL. From

(a),WiseGraph and DGL achieve similar accuracy on both

models and all OGB datasets, with an accuracy difference

within 1%. The test accuracy also matches that on OGB

leaderboard [17]. (b) shows a similar trend of the accuracy

curves on AR with SAGE in 100 epochs.

7.3 Optimization Analysis
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Figure 16. Throughput with search stages and steps.

Performance improvement breakdown. Figure 16 shows

how throughput (processed edges per second) improves with

WiseGraph’s search stages and steps. Given a GNN model

and graph data (tested on AR), the three stages are graph

data partition, operation partition, and joint optimization,

each with several tuning steps. The initial point for each

model is an edge-centric graph partition with the original

user-defined DFG and naive kernels provided by PyTorch

and WiseGraph. The black line is the throughput achieved

by DGL. Graph partition stage can largely improve perfor-

mance for SAGE-LSTM (c) and GCN (d), which comes from

the balanced and batched workload in each 𝑔Task. For RGCN

(a) and GAT (b), as GPU kernels are still inefficient, the im-

provement is not significant. The operation partition stage

has little contribution for GCN and SAGE-LSTM, as their

neural operation is either too simple to be optimized (Ad-

dition in GCN) or too complex that PyTorch’s implementa-

tion is already well-optimized (LSTM). However, for other

models, operation partition can largely improve through-

put, especially for RGCN, the improvement can reach up

to 15× compared with graph partition only. Finally, with

joint optimization, all models’ performance can be further

improved.
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Figure 17. The normalized execution time without and with

the awareness of data duplication in DFG transformations.

Figure 17 shows the execution time breakdown of GNN

models. The execution time is classified by indexing oper-

ations and neural operations. As different operations are

fused into one kernel, some execution time breakdown is

estimated with workload and operation efficiency. The base

implementation (blue) uses the original DFG and the opti-

mized version uses the transformed DFG with the same set

of kernels provided byWiseGraph. The elimination of du-

plicated workloads is dependent on graph data and model

architecture. For RGCN on AR, the neural computation can

be reduced by 92.7% asWiseGraph finds many source ver-

tices sharing the same type. For SAGE, though there is no

duplication on AR,WiseGraph can address duplication of

78.5% in PA-S, which has less number of destination vertices

than source vertices.

Figure 18 shows how different data batching (different 𝐾 )

influences the efficiency of generated kernels for one RGCN

and SAGE-LSTM layer. When 𝐾 is set to 1, the throughput

is extremely low, as there is only one edge in a 𝑔Task and

data is not batched. By increasing 𝐾 , the generated kernel
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Figure 18. The throughput with differently batched data; (a)
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type)=1; (b) SAGE-LSTMwith 𝑔Task generated with uniq(dst-

degree)=min&uniq(dst-id)=K ; X-axis shows the value of 𝐾 .

processes batched edges in each 𝑔Task, and the performance

is largely improved. For RGCN, if 𝐾 continues to increase

and is set to 𝐼𝑁 𝐹 , all edges sharing the same edge type will

be put into a task, which is equivalent to the tensor-centric

approach. As shown in (a), data batching in a 𝑔Task leads

to an improvement of 4.33× compared with the better one

in non-batched or tensor-centric approach. In (b), batching

edges in LSTM brings better parallelism and 6.10× higher

throughput.
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Figure 19. Differentiated execution.

Figure 19 shows the improvement after applying differen-

tiated 𝑔Task execution on AR. Due to different restrictions

in 𝑔Task generation, WiseGraph finds 𝑔Task with frequent

value for RGCN, overfill 𝑔Task for GAT, and underfill 𝑔Task

for the rest. The baseline (left bar) is the uniform execution

that runs all 𝑔Tasks with the same searched operation parti-

tion. 52.9% of execution time is spent on outlier 𝑔Tasks on

average. After applying differentiated execution (right bar),

the execution time of outlier 𝑔Tasks can be reduced by 60.7%

and the overall execution time is reduced by 33.1%.

T
im

e
 (

m
s)

0

200

400

Hidden dimension size

(a) PA-S

25 26 27 28 29 210
0

200

400

Hidden dimension size

(b) FS-S

25 26 27 28 29 210

DGL P3 Our DGL P3 Our

Figure 20. Execution time with varying hidden dimensions.

Figure 20 shows the impact of varying hidden dimension

sizes on the performance of multi-device training. We eval-

uate the execution time for the first layer of GCN on PA-S

Table 3. The processing time for training SAGE inWiseG-

raph

Processing Time (Second) PA AR

Environment Setup 1.2

Train Initialization 8.3 7.2

Disk to DRAM 40.5 2.7

Convergence Time 18915 662

Joint Optimization 100 12

and FS-S. The varying hidden dimension leads to different

communication data volume and computation workload. By

taking into account the pattern of changing data volume

for operation placement,WiseGraph consistently achieves

the shortest execution time. In contrast, the static parallel

strategy employed by DGL and 𝑃3 turns to be inefficient for

certain hidden dimension sizes.

Graph partition results. Figure 15 visualizes the vertex-

centric graph partition and graph partition plans found by

WiseGraph on AR. A scatter means one edge, and the scat-

ters in the same color are partitioned to the same 𝑔Task. (a)

is vertex-centric, in which the task ID increases with the

destination vertex ID. (b)-(e) show the 𝑔Task-based graph

partition plan found by WiseGraph. For RGCN in (b), edge-

type is an important factor used by 𝑔Task; For GAT in (c),

WiseGraph finds that edges sharing the same source vertex

should be grouped. For SAGE-LSTM in (d), destination vertex

degree and edge ID are used for graph partition. The vertices

with similar degrees are grouped together. For SAGE and

GCN, WiseGraph finds limiting the edge number per 𝑔Task

is beneficial to performance.

7.4 Discussion

Overhead analysis. Table 3 compares the pre-processing

time for joint optimization with other necessary steps for

GNN training, such as loading vertex embeddings from disk

to DRAM. The joint optimization pre-processing time in-

cludes graph partition, operation partition, and tuning on

various plans. The convergence time is measured by training

and evaluating for 100 epochs. We can conclude that the time

for joint optimization is comparable with these necessary

steps and is much less than the convergence time (<2%). And

WiseGraph is more light-weight than other graph partition

works such as Metis, which takes over one hour to process

PA. Moreover, as the joint optimization is one-shot for a

model and graph data, the overhead is acceptable.

ApplyingWiseGraph to sampled graph training. To

makeWiseGraph practical in sampled graph training, we

have two considerations. First, different sampled subgraphs

can share the same partition plan of graph data and opera-

tion; Second, the overhead of partition can be overlapped.
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Figure 21(a) demonstrates the first point. Compared to full op-

timization, reusing the partition strategies of graph data and

operations that are searched from other sampled graphs can

still achieve 91% of the performance. Figure 21(b) shows the

overhead of graph sampling and partitioning. Though parti-

tion introduces certain overhead, with more CPU threads (24

out of the total 128), the overhead is less than the epoch time

of training and can be fully overlapped. Additionally, apart

from graph sampling, only one CPU thread is utilized to ini-

tiate GPU kernels. As a result, CPU resource is underutilized,

presenting the opportunity to allocate it and mitigate graph

partitioning overhead.
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Figure 21. UsingWiseGraph for sampled graph training.

8 Related Work

Graph data partition. Partitioning graph data is proved

to be effective for locality [2, 54, 59] and balanced work-

load [7, 29] in graph computing. In GNN, as per-edge work-

load is heavier, graph data partition is also important for par-

allelization. Tensor-centric [11, 26, 28] approach uses tensors

to represent graph data as a whole. Vertex-centric [42ś45, 47]

is a commonly used graph-centric approach that partitions

graphs by vertices. Other graph partition methods for GNN,

such as edge-centric [37], neighbor grouping [19], 2D par-

tition [18], and clustering [27], improve workload balance

and locality, and they are solely based on the graph structure.

𝜇Grapher adaptively applies vertex-centric and edge-centric

to GNN operations, but its optimization space is limited with

two strategies.

Optimizations for GNN operations. DGL [42] and Ru-

bik [9]work onDFG for better execution order; Graphiler [48]

sets fusion rules for DFG; FeatGraph [18] generates GNN

kernels using TVM [8]. 𝑃3 [12] is the tensor parallel for

GNN training, which can reduce communication workload

in multi-device training. It statically set the parallel strategy,

sometimes leading to more communication workloads.

Joint optimization for graph data and operations. GN-

NAdvisor [43] explores the data pattern of the input graph

structure for optimization while utilizing the model informa-

tion at the same time. However, it explores coarse-grained

data patterns from the entire graph and only extracts simple

information such as the embedding length from models.

9 Conclusion

This paper presentsWiseGraph, a GNN training framework

exploring the joint optimization space of graph data and

GNN operation partitions, which includes existing GNN

workload partition strategies as special cases and reveals

new optimization with 𝑔Task. Evaluation on five typical

GNN models shows thatWiseGraph outperforms existing

GNN frameworks by 2.04× and 2.22× for single and multiple

GPU training.
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A Artifact Appendix

A.1 Abstract

This artifact includes the source codes and experiments for

replicating the evaluations in this paper.

A.2 Description & Requirements

A.2.1 How to access. WiseGraph is publicly available at

https://github.com/xxcclong/CxGNN-Compute.

A.2.2 Hardware dependencies.

• NVIDIA Tesla A100-PCIe GPU

• Memory > 400GB

• Disk space > 100GB

A.2.3 Software dependencies. We list the most impor-

tant software we used:

• CUDA 11.7

• Torch==2.0.1+cu117

• dgl==1.0.0

• torch_geometric==2.5.0

They can be installed by following the instructions.

A.2.4 Benchmarks. The dataset used are from OGB [17],

the detailed information is listed in Table 1. You can access

the processed data following instructions.

A.3 Set-up

Install CxGNN-Compute according to its README.

A.4 Evaluation workflow

Using scripts in CxGNN-Compute/test/ae, all experiments

can be executed.

A.4.1 Major Claims.

• (C1): WiseGraph achieves 2× speedup over baselines,

as shown in Figure 13. This is proven by experiment

(E1).

• (C2): WiseGraph’s optimization does not affect the

accuracy of the trained model, as shown in Figure 14.

This is proven by experiment (E2).

• (C3): Each of WiseGraph’s data-aware optimizations

provides speedup according to our ablation study (Fig-

ure 17, Figure 18, and Figure 20). This is proven by ex-

periment (E3), which contains three sub-experiments

for the optimizations of duplicated data, batched data,

and changing data volume respectively.

A.4.2 Experiments. Experiment (E1) [30min]: Overall

performance of WiseGraph, PyG, and DGL on different

datasets andmodels. Follow the instructions to prepare datasets,

run the experiment, and collect the results.

Experiment (E2) [30min]: Accuracy of WiseGraph and

DGL. Follow the instructions to prepare datasets, run the

experiment, and collect the results.
Experiment (E3) [30min]: Ablation study of WiseGraph.

Follow the instructions to run the experiment and collect

results. There are three sub-experiments in it. Results will

be visualized using ipython.

A.5 Notes on Reusability

There are multiple ways to reuseWiseGraph for GNN train-

ing. The simplest approach is to directly reuse WiseGraph

to train the five pre-supported GNN models in the code. If

modifications to the model architecture are required, one

can either make modifications withinWiseGraph or reuse

the efficient GNN operators present in WiseGraph. If there

is a need to add CUDA operators for GNN, one can reuse the

CPP code or Triton code in WiseGraph.

A.6 General Notes

If you encounter any problems on setting up or reproducing,

please refer to troubleshooting.
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