
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023 10181

Expanding the Edge: Enabling Efficient Winograd
CNN Inference With Deep Reuse on Edge Device

Feng Zhang , Member, IEEE, Ruofan Wu , Jiawei Guan , Zhen Zheng , Xiaoguang Guo , Xiao Zhang ,
Xiaoyong Du , and Xipeng Shen , Member, IEEE

Abstract—Deep learning on edge devices is becoming increas-
ingly important, especially with the explosion of IoT devices. For
example, the total number of devices connected to IoT reaches 29
billion in 2022. Convolutional neural networks (CNNs), as common
deep learning representatives, are among the most popular neural
networks in knowledge and data engineering. However, CNN em-
ploys a high degree of computing. In comparison to the training
phase, the inference process is more frequently done on low-power
computing equipments, such as edge devices. The limited comput-
ing resource and high computation pressure limit the effective use
of CNN algorithms at the edge. Fortunately, a minimal filtering
algorithm called Winograd can reduce convolution calculations
by minimizing multiplication operations. We find that Winograd
convolution can be accelerated further by deep reuse technique,
which reuses the similar data and computation processes. In this
paper, we propose a new inference method, called DREW, which
combines deep reuse with Winograd for further accelerating CNNs.
DREW handles three difficulties. First, it can detect the similarities
from the complex minimal filtering patterns by clustering. Sec-
ond, it reduces the online clustering cost in a reasonable range.
Third, it provides an adjustable method in clustering granularity
balancing the performance and accuracy. We perform evaluation
on Raspberry PI and NVIDIA Jetson AGX Xavier edge devices, and
experiments show that on five popular networks, 1) DREW further
accelerates the Winograd convolution by an average of 8.27×
speedup. Even for the highly parallel Winograd implementation,
DREW still can provide 2.21× speedup. 2) When DREW is applied
to end-to-end Winograd CNN inferences, DREW achieves 5.94×
the average performance speedup with no (<0.4%) accuracy loss.
3) Energy consumption is an important factor for inference in
practice. DREW reduces the number of convolution operations to
10% of the original operations, thus achieving up to 60% energy-
efficiency benefits than the original Winograd inference.

Index Terms—CNN, deep reuse, inference, winograd.

Manuscript received 8 May 2022; revised 31 January 2023; accepted 8
April 2023. Date of publication 21 April 2023; date of current version 15
September 2023. This work was supported in part by the National Natural
Science Foundation of China under Grants 62172419, 62072459, and 61732014,
in part by Alibaba Group through Alibaba Innovative Research (AIR) Program,
and in part by Beijing Nova Program. Recommended for acceptance by B.
Glavic. (Corresponding author: Xiao Zhang.)

Feng Zhang, Ruofan Wu, Jiawei Guan, Xiaoguang Guo, Xiao Zhang, and
Xiaoyong Du are with the Key Laboratory of Data Engineering and Knowl-
edge Engineering (MOE), School of Information, Renmin University of China,
Beijing 100872, China (e-mail: fengzhang@ruc.edu.cn; ruofanwu@ruc.edu.cn;
guanjw@ruc.edu.cn; xiaoguangguo@ruc.edu.cn; zhangxiao@ruc.edu.cn; duy-
ong@ruc.edu.cn).

Zhen Zheng is with the Alibaba Group, Hangzhou 311121, China (e-mail:
james.zz@alibaba-inc.com).

Xipeng Shen is with the Computer Science, North Carolina State University,
Raleigh, NC 27695 USA (e-mail: xshen5@ruc.edu.cn).

Digital Object Identifier 10.1109/TKDE.2023.3269017

I. INTRODUCTION

D EEP learning has shown successes and gained popularity
in data science applications [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10], especially with the booming of IoT devices. For
example, by 2022 the total number of devices connected to
IoT worldwide reaches 29 billion and will increase to about 75
billion by 2025 [11]. Convolutional neural networks (CNNs), as
representatives of deep learning networks, draw much attention
in knowledge and data engineering. Different from the training
process, inferences of CNN are widely applied at the edge in
industry and face a high demand for performance optimiza-
tion [12], [13], [14], [15], as shown in Fig. 1. Note that acceler-
ators with high computing power are usually too expensive for
companies to apply to inference workloads for mass deployment.
In industry, the CNNs are usually trained on HPC clusters, while
the inference could be conducted on less powerful devices, such
as mobile processors at the edge [16], [17]. Energy efficiency
is another concern, since edge computing usually happens in
resource-constrained environments. Due to high compute den-
sity, it is important to optimize the inference process at the edge,
especially for industry usage. The key to improving the inference
performance of CNN models is to accelerate the convolutional
layers, which are computation-intensive and dominate the total
execution time. In this paper, we study CNN accelerations on
edge devices.

Among massive CNN optimization techniques, Winograd
convolution [18] has been proved to be an effective method.
Employing Winograd minimal filtering algorithm reduces the
arithmetic complexity of convolution operations by at least
2.25× [18] theoretically, saving substantial time and energy. The
majority of modern deep learning libraries, including Nvidia
cuDNN [19] and Intel oneDNN (previously known as MKL-
DNN) [20], enable Winograd convolution for CNNs. Addition-
ally, several attempts have been made to accelerate Winograd
convolution via increased hardware efficiency [21], [22]. Hence,
Winograd is a potential optimization method to accelerate CNN
computation on edge devices.

There is a large literature of Winograd convolution. However,
prior research on Winograd convolution concentrated on how
to improve the algorithm’s performance on certain hardware
platforms, such as GPUs [19], [22], rather than the algorithm’s
structure. We find that, rather than performing typical code opti-
mizations, a unique approach called deep reuse [10] can uncover
and leverage reused calculations to accelerate convolutions.

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 1. CNN in industrial edge devices.

This approach reuses intermediate results in CNN inference
by recognizing similarities among neuron vectors, saving both
space and time on the fly [23]. The present deep reuse approach,
unfortunately, is limited to GEMM-based convolution. The per-
formance of CNN inference could be considerably enhanced
if deep reuse is applied to the Winograd convolution. This is
especially beneficial for edge situations.

Integrating deep reuse with Winograd convolution at the
edge faces three major challenges. First, Winograd convolution
involves fixed minimal filtering patterns, so there is no direct
neuron vector to extract in the Winograd algorithm. Second,
deep reuse is an online process in which the similarity detection
process among neuron vectors happens during the inference
time. Accordingly, it poses a tighter constraint on the introduced
overhead compared to the conventional convolution. Third, the
limitations of minimal filtering patterns also prevent us from ad-
justing the reuse granularity as flexibly as the original deep reuse
does. Because deep reuse is a lossy optimization, to provide
the choice to trade-off between performance and accuracy loss,
we need to propose a novel design to adjust reuse granularity at
the edge.

We develop a new inference method, called DREW, which can
effectively combine deep reuse with Winograd convolution on
edge devices, as shown in Fig. 1. DREW solves the challenges
above and brings huge performance improvements. First, we
design a novel approach to leverage the neuron similarities in
Winograd convolution, which has been proved to have great
potentials. Second, to minimize the runtime overhead introduced
by deep reuse, we develop a novel clustering process, which
causes only a small proportion of time compared to the overall
operation time and reduces the space overhead on the fly. Third,
we extend our approach to make it adjustable in clustering
granularity, and leave the adjustment between performance and
accuracy to users to meet their different needs. Moreover, we
make our solution, DREW, a library for users to easily apply our
work. Our preliminary work has been presented in DREW [24],
which provides only a simple design without considering the
edge situation. In this work, we perform DREW at the edge.

We evaluate DREW on Raspberry PI and NVIDIA Jet-
son AGX Xavier edge devices with five popular neural net-
works: LeNet-5 [25], CifarNet [26], VGG-11 [2], VGG-16 [2],
and SqueezeNet [27]. For single-layer performance, DREW
achieves 8.27× speedup on average compared to the Winograd
convolution without deep reuse. Even for the highly parallel
Winograd implementation, DREW can still provide 1.13× to
4.36× performance improvement. For end-to-end performance,

Fig. 2. Raspberry PI 4 Model B.

DREW achieves 5.94× performance improvement with little
(<0.4%) accuracy loss, and for parallel implementation, DREW
still maintains 1.16× to 2.75× performance improvement. With
detailed analysis, the convolution operations can be reduced to
an average of 10% of the original computations and take up
33% to 55% of the original execution time. Energy efficiency
is another important factor for devices executing CNN infer-
ence. We also evaluate DREW from the energy perspective. As
the computation amount is greatly reduced, DREW improves
the average energy efficiency of CNN inference by up to 62%.

In summary, this work makes the following contributions.! It points out that deep reuse can be efficiently combined
with Winograd convolution at the edge for the first time.
This work proposes a new inference optimization method,
called DREW, which can detect and exploit input sim-
ilarities among Winograd minimal filtering computation
patterns.! It designs a novel clustering process for DREW at the edge,
which reduces online cost in inference. It extends DREW to
adjust the clustering granularity, allowing users to balance
the trade-off between accuracy and efficiency.! It validates the efficacy of DREW and demonstrates its
significant performance and energy benefits with almost
no accuracy loss on the edge device.

II. BACKGROUND

In this section, we first introduce edge computing, followed
by the Winograd convolution, and then show the deep reuse
technology.

A. Edge Computing

Edge computing brings data processing closer to the source,
and edge devices consume data locally. With its advantages of
reducing data transmission, improving service quality, protect-
ing user privacy, and relieving cloud computing pressure, edge
computing has become an important solution to break through
the bottleneck of emerging Big Data problems. For example,
the edge device Raspberry PI 4 Model B [28], as shown in
Fig. 2, is a 86×56 mm small device based on a high-performance
64-bit quad-core ARM Cortex-A72 64-bit SoC, 1/2/4 GB of

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10183

Fig. 3. The workflow of Winograd convolution.

RAM, one Gigabit Ethernet interface, dual-band 2.4/5.0 GHz
wireless LAN, Bluetooth 5.0, two USB 2.0 ports, two USB 3.0
ports, two micro-HDMI connectors, and one microSD card slot.
Such a functional edge device costs less than $55, with power
consumption less than 6.4 W.

Edge devices, such as Raspberry Pi, are an apt choice for IoT
Applications [29]. Countless Internet-based projects are already
using them to create tablets [30], laptops [31], robots [32], and
smart mirrors [33]. Although they can be applied to common
applications, for popular convolutional neural networks, these
devices still lack capacity. For example, Raspberry PI 4 Model
B is powered by 1.5 GHz quad-core processor with low com-
puting power, which requires additional optimization to execute
convolutional neural networks, especially the inference process.

B. Winograd Convolution

The Winograd convolution is a kind of convolution algorithm
that employs the Winograd minimal filtering algorithm, result-
ing in fewer arithmetic operations compared to the original
implementation [34]. The Winograd minimal filtering algo-
rithm, denoted as F(m×m, r×r), computes m×m outputs with
a r×r filter, and reduces the number of multiplications from
(m×r)2 to (m+ r − 1)2. In this paper, we use a common case
of F(2×2, 3×3) for application, which has also been used in
previous studies [20], [21], [22].

Workflow. The workflow of the convolutional layer with
F(2×2, 3×3) Winograd minimal filtering algorithm is shown
in Fig. 3. First, each 3×3 filter is performed by a filter transfor-
mation (Step 1) to a 4×4 transformed filter. Second, the input
images or feature maps are divided into tiles of size 4×4, with
2 elements overlapping between neighboring tiles. Each tile is
performed by an input transformation (Step 2) to a 4×4 trans-
formed input tile. Third, it executes element-wise multiplication
(Step 3) with the filter of the corresponding input channel and

Fig. 4. The illustration of GEMM-based convolution and the workflow of deep
reuse.

accumulation along input channels. Fourth, it performs output
transformation (Step 4) for each pre-transformed output tile (the
result of element-wise multiplication and accumulation) to a
2×2 output tile.

Difference From Direct Convolution. Winograd convolution is
significantly different from direct convolution. First, Winograd
convolution needs to load a 4×4 tile before performing compu-
tation, instead of directly loading an element for a multiply-add
operation. Second, Winograd convolution needs to perform an
input transformation and an output transformation before and
after element-wise multiplication. Third, Winograd convolution
takes 2×2 tile as the smallest unit to obtain computational
results, while direct convolution can obtain the computational
result of one output element directly.

Winograd CNN Inference. For online Winograd CNN infer-
ence, the filter transformation can be finished at preprocessing
time once. Therefore, the inference time mainly comes from
input transformation, element-wise multiplication, and output
transformation, which are the emphasis of our optimization.
Among these operations, there can be a large number of similar
neurons, where data reuse optimization can be applied. This is
beneficial for inference at the edge.

C. Deep Reuse

Deep reuse is a kind of data science optimization for ac-
celerating CNN inferences by detecting and utilizing runtime
similarities among input data [10], [23]. To compute the con-
volutional layer, the common practice is to unfold the input
images and filters into input matrix x and weight matrix W,
and then perform General Matrix Multiplication (GEMM) with
two matrices, as shown in Fig. 4(a). The idea of deep reuse
is that strong similarities exist among neuron vectors. Here, a
neuron vector is composed of several consecutive elements in

10184 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

a row of the unfolded input matrix x. Therefore, the neuron
vectors can be clustered into a small number of groups, and the
computation results for the cluster centroids can be reused by
all neuron vectors in clusters.

Workflow. We show the deep reuse workflow in Fig. 4(b).
First, the neuron vectors, which are the rows of the input ma-
trix x, are clustered and represented by the cluster centroids.
In the instance of Fig. 4(b), the neuron vectors are clustered
into two centroids. Second, the input-weight multiplication is
transformed into centroid-weight multiplication. Finally, the
results are reconstructed using the computation results of cluster
centroids.

Clustering Method. Deep reuse uses Locality Sensitive Hash-
ing (LSH) [35] as the clustering method to detect similarities
among neuron vectors because LSH can deliver good clustering
results and does not introduce excessive overhead to inferences.
LSH ensures that the computation savings serve its purpose for
performance improvement without accuracy loss. For each input
vector x, a hash function h is determined by a random vector v
in the following (1):

hv(x) =

{
1 if v · x > 0
0 if v · x ≤ 0

(1)

With H random vectors, LSH maps an input vector into a bit
vector with 2H possibilities. The input vectors that are close to
each other have a high probability to be hashed into the same
bit vector. Thus, the roughness of the clustering can be adjusted
by the number of hash functions. After LSH being applied to
deep reuse, the integer value of the bit vector can be used as a
cluster ID. Then, the cluster centroids are computed using the
neuron vectors with the same cluster ID for retrieving them for
later computation. Ning et al. [23] define the remaining ratiorc
to measure reusable potential, which is the ratio of the number of
clusters attained after LSH to the total number of neuron vectors.
A smaller remaining ratio indicates larger computation savings.

Difficulties in Combining Winograd and Deep Reuse. If we
can combine deep reuse with Winograd convolution effectively,
the CNN inference can be further accelerated significantly.
However, deep reuse cannot be directly applied to Winograd
convolution. Applying deep reuse to Winograd convolutions
involves complexities. For example, the tiles in Winograd-based
convolution are fixed, which is to say, we cannot divide the tiles
into different vectors for clustering to retain the advantages of
the original Winograd algorithm, because results are obtained
from tiles.

III. REVISITING WINOGRAD CONVOLUTION

In this section, we first analyze the reuse opportunities on
Winograd convolution. Second, we show our observations and
insights. Third, we discuss the importance and benefits of our
work.

A. Opportunities

We explore the reuse opportunities of combining deep reuse
and Winograd-based convolutions and show the Winograd-
based convolution in Fig. 5. We have the following insights.

Fig. 5. Tile in Winograd-based convolution. The input tile size 4x4 and output
tile size 2 × 2 are defined by F(2 × 2,3 × 3).

Insight 1: The Neuron Similarities Exist in Winograd Convo-
lution. Based on our observation, neuron similarities exist in
Winograd convolution. For Winograd-based convolution, the
4×4 tiles are local neurons as shown in Fig. 5. Due to the
continuity in images or feature maps that CNN often targets,
it has been proved that neighbor neurons have extremely strong
similarities [36]. Hence, there is a high probability that similari-
ties exist among such small tiles in Winograd convolution. This
provides us with a great opportunity to further accelerate CNN
inference, and thus we can use the similarity between tiles in
Winograd to reduce the amount of computation to save time.

Insight 2: Deep Reuse is Worth to be Applied to Winograd
Convolution, Because it has Much Higher Performance Poten-
tial Than That in Conventional Convolution. Winograd convo-
lution reduces the multiplication computation, and the tile in
Winograd convolution is suitable for data reuse. Assume that
there are large similarities among tiles of batched input, by
combining deep reuse and Winograd with proper granularity,
we can further significantly reduce the amount of computation
for the CNN inference and bring performance improvements.

B. Observation

Finding: Experimental observations prove our assumption
on tile similarities: there is huge potential of performance
improvement for combining deep reuse with Winograd con-
volution.

To prove our assumption on tile similarities, we conduct a
series of experimental analysis and draw the conclusion that
there is huge potential for performance improvement of com-
bining deep reuse and Winograd convolution. We use the trained
model of CifarNet [26] on CIFAR10 [37], and run its inference
for illustration. We apply LSH with different numbers of hash
functions to the two convolutional layers of Conv1 and Conv2
and record the remaining ratio after clustering. Note that a larger
number of hash functions means a more fine-grained clustering,
and the remaining ratio indicates the reusable potentials, as
discussed in Section II-C. Figs. 6 and 7 show the experimental
results of Conv1 and Conv2 in CifarNet.

Observation 1: Similarities Exist in Single Channel. We detect
the similarities among tiles in each channel with different batch
sizes and report the average remaining ratio of each channel.
The results are demonstrated in Fig. 6, which shows that the two

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10185

Fig. 6. The remaining ratio of the different numbers of hash functions with
different batch sizes in a single channel. N represents the batch size.

Fig. 7. The remaining ratio with different numbers of hash functions and
different numbers of channels.

convolutional layers exhibit similar trends. The remaining ratio
(introduced in Section II-C) reaches an average of 0.084 in the
first convolutional layer and 0.139 in the second convolutional
layer. They both increase along with the increase of hash size
and the decrease of batch size.

Observation 2: Similarities Exist Between Different Chan-
nels. We detect the similarities among tiles of multiple channels
with a fixed batch size of 100 (we treat the tiles of several
consecutive channels as the neuron vectors) and present the
results in Fig. 7. Assume that the input to the convolutional layer
has C channels. We evenly divide the C channels into x parts
so each part has C/x channels. We treat the tiles of consecutive
C/x channels as the neuron vector and apply LSH to them in
each part. The results show that tiles of multiple channels still
generate a small remaining ratio, especially when the number
of hash functions is small. Generally, fewer channels lead to a
smaller remaining ratio.

To sum up, large data similarities exist among tiles of Wino-
grad convolution, which provides reuse opportunities.

C. Challenges

Winograd has been proved to be an important method acceler-
ating convolution inference, and we find that the tile in Winograd
convolution is suitable as the object we reuse, as discussed above.
Since the observations have proved that there is large similarity
among tiles of batched input, a large amount of computation can
be saved by leveraging the similarity. Thus, higher performance
speedups and energy savings of Winograd convolution can be
achieved, which are of great benefit to the inference devices.

However, combining deep reuse and Winograd convolution
requires addressing the following three challenges.

Challenge 1: Algorithm Design. The computation process in
Winograd convolution is complicated: Winograd convolution
involves fixed minimal filtering patterns, whose neuron vec-
tors cannot be extracted directly. Consequently, an appropriate
method needs to be designed for reuse, exploiting the similarities
and saving computations.

Challenge 2: Clustering Overhead. Deep reuse is an online
process in which the similarity detection process among fea-
ture maps happens during the inference time. Accordingly, it
poses a tight constraint on clustering time: the time overhead
introduced by LSH, including detecting similarities, computing
cluster centroids, and retrieving for reuse, has to be restricted to
a minimal range. In particular, logics in retrieving the clustering
result for reuse need to be parallelized for efficiency, making
this challenge even more difficult to solve.

Challenge 3: Cost-Benefit Trade-off. The size of tiles in
Winograd convolution is fixed, so we cannot flexibly adjust the
clustering granularity by changing the length of neuron vectors.
To further optimize the performance of Winograd convolution
and balance the trade-off between performance and accuracy
loss, a novel method to adjust clustering granularity needs to be
designed.

IV. DREW OVERVIEW

We show in Section III that strong similarities exist among
input tiles of each channel in Winograd convolution, which
provides us the opportunity to save computations by reusing
the computed results of a small number of tiles. In this section,
we first elaborate on our idea of applying deep reuse in Wino-
grad convolution. Then, we show an example and present our
solutions to the challenges listed in Section III-C.

Idea. Revisiting the process of Winograd convolution men-
tioned in Section II-B, we can see that the workflow of Winograd
convolution includes 1) filter transformation, 2) input transfor-
mation, 3) element-wise multiplication, and 4) output transfor-
mation. We group the input tiles of each channel into clusters
and compute the cluster centroids. Then, we perform input
transformation, K element-wise multiplication, and K output
transformation on these centroid tiles. Finally, we accumulate
the corresponding centroid tiles of each input channel to produce
output. Note that the accumulation along input channels happens
on element-wise multiplication in the original Winograd convo-
lution. We leave it to the last for saving addition operations.

Example. We show an example in Fig. 8 for processing a
1×2×6×6 input with 2×2×3×3 filters. The filters have been
transformed during the preprocessing time. First, after cluster-
ing, four input tiles are grouped into two clusters of each channel
respectively. The four input tiles can be represented by the two
cluster centroids. Second, four centroid tiles of all channels
are transformed in a way like the input transformation in the
Winograd algorithm. Third, each transformed centroid tile is
element-wise multiplied by the filters of two output channels.
Fourth, the results of multiplication are transformed in a way
like the output transformation in the Winograd algorithm. Fifth,
we accumulate the output along input channels, and obtain all
tiles in the final output from the computed centroid tiles.

10186 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 8. Example of applying deep reuse to Winograd.

Solutions to Challenges. We develop DREW to solve the
challenges listed in Section III-C. First, we design a method
to leverage the neuron similarities in Winograd convolution
in which the tile size 16 is the smallest clustering granularity
(Sections IV and V-A). Second, to minimize the time overhead
introduced by clustering, we choose the fast LSH as the clus-
tering method. However, we design a new method to retrieve
cluster centroids, which is more suitable for modern processors
and can minimize the space overhead (Section V-B). Third, we
extend the algorithm to reuse tiles of the input channels, which
allows users to tune the clustering granularity for the trade-off
between accuracy and time savings (Section V-C).

Novelty. Based on the solutions above, our work makes the
following novel contributions. First, we develop new algorithms
to detect similarities in the complex filtering patterns of Wino-
grad (Section V-A). Second, we provide novel clustering designs
in combing deep reuse and Winograd to reduce online costs
within a reasonable range (Section V-B). Third, we provide a
novel method for users to adjust the clustering granularity, which
can balance the trade-off between performance and accuracy
(Section V-C). Then, we develop a fine-tuning process to main-
tain high accuracy (Section VII-D).

Discussion. After deep reuse is applied to Winograd convo-
lution, the computations of input transformation, element-wise
multiplication, and output transformation in Winograd convolu-
tion can be greatly reduced. Note that we cannot eliminate the
input and output transformations between layers. The input and
output transformations are integral parts of the convolutional
computation formulated as the Winograd minimal filtering al-
gorithm, and eliminating them would ruin the results of convo-
lutional computation.

TABLE I
SUMMARY OF NOTATIONS

V. DETAILED DESIGN

After presenting the idea of combining deep reuse and Wino-
grad convolution in Section IV, we introduce the detailed design
of DREW in this section. First, we present the basic workflow
of DREW. Second, we delve into the design of clustering and
extend the clustering granularity to multiple channels. Third, we
show the parallel design of DREW.

A. Deep-Reuse Winograd

Preliminaries. Before illustrating the design of DREW, we
first review the notations and the original Winograd convolu-
tions. We list the notations used in our work in Table I.

Winograd Presentation. The original Winograd convolution
can be written in the following formulations. ForN×C×H×W
inputs with K×C×3×3 weight filters in Winograd convolu-
tion (Section II-B), filter transformation F̂ = GFGT is fin-
ished in the preprocessing time, where G is a 4×3 matrix
defined in Winograd minimal filtering algorithm. During the
inference time, the input images or feature maps are divided
into P = N$H ′/2&$W ′/2& tiles, where H ′ and W ′ are the
height and width of outputs. An input tile In,c,i,j in channel
c is transformed by În,c,i,j = BT In,c,i,jB, where B is a 4×4
matrix defined in Winograd minimal filtering algorithm. Then,
the transformed tile În,c,i,j is element-wise multiplied with K
transformed weights and accumulated with the results of the
tiles in the same position in other channels, which is Ôn,k,i,j =∑c−1

c=0 F̂k,c ' În,c,i,j . Finally, the output of On,k,i,j in channel
k can be obtained from the output transformation AT Ôn,k,i,jA,
where A is a 4×2 matrix defined in Winograd minimal filtering
algorithm.

Combining Deep Reuse and Winograd Convolution. In
DREW, the 2D batched deep reuse for Winograd convolution

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10187

can be written in the following five steps. Note that the filters
have been transformed during the preprocessing time.

Step 1: Clustering. For each 4×4 input tile In,c,i,j , Vn,c,i,j is
the 1D neuron vector flattened from In,c,i,j . Each neuron vector
Vn,c,i,j is projected as a bit vector Pn,c,i,j by Ĥ hash functions,
as shown in (2), where pn,c,i,j is the integer value of the bit
vector Pn,c,i,j . Note that T ∈ RĤ×16 is the hash table with Ĥ
random vectors.

Pn,c,i,j = TVn,c,i,j ∈ RĤ (2)

Then, for each input channel c, the identical integer values
of neuron vectors are mapped to the same bucket to obtain the
bucket ID bn,c,i,j and the bucket size Nb. Note that the bucket
ID b of neuron vectors in different input channels is different
because we cluster the tiles of each channel respectively. Finally,
the cluster centroid of each bucket b is calculated in (3).

Cb =
∑

Vn,c,i,j∈bucketb

Vn,c,i,j/Nb (3)

Step 2: Input transformation. For each centroid vector Cb, we
perform input transformation, as shown in (4).

Ĉb = BTCbB (4)

Step 3: Element-wise multiplication. For each centroid vector
Cb of input channel c and each output channel k, we perform
element-wise multiplication, as shown in (5).

D̂b,k = Ĉb ' F̂c,k (5)

Step 4: Output transformation. For each centroid vector Cb,
we perform output transformation, as shown in (6).

Db,k = AT D̂b,kA (6)

Step 5: Output accumulation. For each output tile and each
output channel k, we perform output accumulation, as shown in
(7).

On,k,i,j =
C−1∑

c=0

Dbn,c,i,j ,k (7)

B. Clustering Design

We analyze our clustering design of Step 1 mentioned in
Section V-A. Since Winograd is an online process, Winograd
poses a tight constraint on clustering time. The clustering process
includes LSH projection, the computation of the integer value
of bit vectors, bucket mapping, and centroid calculation. To
minimize the time overhead caused by deep reuse, we mainly
optimize the following two substeps, LSH projection and bucket
mapping.

LSH Projection. The LSH has been introduced in Section II-C.
However, the LSH cannot be used directly. For example, we need
to adjust the number of hash functions in Winograd applications.
The design of LSH projection is as follows.

1) Detailed design. For our batched deep-reuse Winograd in
DREW, instead of indexing the vectors one by one, we perform

LSH projection by an H×16×CP GEMM at one time. Conse-
quently, we convert it into a GEMM process. Then, we compute
the integer value of each bit vector, which is the projected neuron
vector, for bucket mapping. After LSH is applied, the input
vectors with small distances have a higher probability of being
hashed to the same bit vector, so these input vectors are easier
to be mapped to the same bucket in our application.

2) Configuration. To obtain the best configuration for cluster-
ing using LSH, we need to adjust LSH to find a solution that can
recover accuracy while minimizing the amount of computation.
The number of hash functions Ĥ is a parameter for clustering
configuration. It has been proved that Ĥ mainly affects rc, where
rc is the remaining ratio |C|

N [23]. If we use a large Ĥ for
LSH, then we have a high probability of getting more buckets
through clustering. Accordingly, fewer vectors will be assigned
into each bucket, which will result in an increase in rc and less
computation reduction. Therefore, we prefer a small number of
hash functions. However, if Ĥ is too small, the variance in a
bucket will be large, which will bring a loss to the accuracy of
CNN. Consequently, we need to make a trade-off between the
amount of calculation and accuracy, and then use the optimal
parameter configuration to achieve good results. More detailed
analysis can be found in Section VII-E.

3) Complexity analysis. With Ĥ hash functions, the total
computational complexity of clustering is O(C·P ·Ĥ), which
can also be presented as O(C·N ·H·W ·Ĥ).

Bucket Mapping. Bucket mapping uses the integer value of
each bit vector to map similar vectors to the same bucket (cluster)
and thus clustering results are obtained. This is the most difficult
part to be parallelized in combining deep reuse and Winograd in
DREW, because we need to record the buckets with their related
vectors and calculate the bucket size.

1) Analysis. Before showing our bucket mapping design, we
first revisit the bucket mapping in [23], which treats the integer
value of the bit vector as cluster ID (to distinguish it from
ours, we denote ours as bucket ID). Utilizing these cluster IDs
minimizes the time overhead in a conflict-free hash. However,
such a solution cannot be used in our situation. The space
for 2Ĥ cluster centroids needs to be allocated before centroid
calculation; if we adopt this method, we need to allocate C×2Ĥ
neuron vectors for later element-wise multiplication. This would
be a huge space overhead and would become a burden especially
on the industrial hardware where CNN inferences commonly
run.

2) Algorithm design. We develop a novel bucket mapping
strategy in DREW, as shown in Algorithm 1. First, DREW
needs to map the tiles In,c,i,j to the buckets bn,c,i,j . DREW
iterates over $H ′&×$W ′& values in C channels, as shown from
Lines 6 to 8. Then, for batch n, DREW traverses each 4×4
input tile In,c,i,j in C channels, and obtains the tile’s integer
value from the bit vector proj_vectors in Line 9.

Second, DREW increases the newly discovered bucket ID in
order and counts bucket size. With channel c and hash value,
we can obtain the bucket ID b from hash_map in Line 10.

If the bucket is first met, which means that b is equal to 0 as
shown in Line 11, then, no vector whose hash value is equal to

10188 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

value has yet appeared in channel c. Hence, a new bucket needs
to be created. DREW records the bucket ID corresponding to
the hash value in Line 12, and sets the number of vectors in the
bucket to 1 in Line 13. Then, DREW records the vector ID for
subsequent solving of the cluster center in Line 14 and increases
the bucket number in Line 15.

If the bucket for the current hash value already exists, which
means that b is greater than 0 in Line 16, we need to increase
the bucket count by 1 and record the vector ID, as shown from
Lines 17 to 19. When all channels have been processed, we save
the number of total buckets in Line 20.

Third, DREW computes the cluster centroid of each bucket
from Lines 22 to 27. In detail, DREW traverses the vectors
in each bucket, and sets the centroids with the average of
input_vectors.

3) Complexity. We analyze the complexity of Algorithm 1.
With such design, we only need O(

∑
Nb) space for clustering

and later computation. Because the integer values of vectors
provide a hash-map with an O(1) lookup complexity in nature,
we can finish bucket mapping in O(C·P) complexity, whose
time proportion in the whole clustering phase is small (compared
with LSH projection and centroid calculation). Experiments also
show that the time of this part is acceptable (Section VII-F).

C. Clustering Granularity

To further optimize the performance of DREW, we extend
the clustering granularity to tiles of multiple channels. This is
regarded as a user-defined parameter to trade-off between time
savings and accuracy loss.

Limitations in the Algorithm. First, because it is uncertain
which bucket each neuron vector is mapped to, the memory
access to Dbn,c,i,j in output accumulation is discontinuous. The
output accumulation phase in our basic algorithm needs a long
time in the whole process. This situation could be alleviated if we
find a way to reduce such memory access pressure. Second, if we
only define the tile of one channel as the clustering granularity,
users cannot adjust the performance and accuracy based on their
requirements.

Clustering Granularity Design. We solve such limitations
by clustering tiles of multiple channels in DREW. We find
that tiles of multiple channels also have similarities with each
other and these tiles even reach a smaller remaining ratio when
the number of hash functions is small. If we cluster tiles of
multiple channels and reuse the computation results, the results
of element-wise multiplication in these channels can be accumu-
lated in the element-wise multiplication phase and the amount
of output accumulation is reduced. Therefore, the performance
becomes higher due to the smaller remaining ratio and fewer
discontinuous memory accesses.

D. Parallelism

In this section, we first discuss the parallelism and complexity
of DREW. To facilitate the analysis of computation savings, we
uniformly denote the height and width of the input and output
as H and W . Then, we analyze the properties of clustering
parameters according to the complexity.

Algorithm 1: Bucket Mapping.

Parallel Design. All the five steps of DREW described in
Section V-A can be parallelized. For the first step of clustering,
the LSH projection can be treated as a GEMM and is thus
processed in parallel. The integer value of each projected bit
vector and the computations for each bucket centroid can also
be done in parallel. For the second step of input transformation,
the third step of element-wise multiplication, and the fourth step
of output transformation, the computations for each centroid
vector can be executed in parallel and we process these three
steps within a loop to avoid unnecessary memory accesses. For
the fifth step of output accumulation, we retrieve the results of
centroid vectors of C channels and accumulate them for each
output tile in parallel.

Complexity. The computational complexity of the original
Winograd convolution is O(N ·H·W ·C·K) [18]. Assume that
input channels are divided into Ncb channel blocks and each
channel block contains tiles of Lcb channels (C=Ncb · Lcb).
From the previous analysis of LSH in Section V-B, the total

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10189

computational complexity of clustering is O(C·N ·H·W ·Ĥ). If
the neuron vectors can be grouped into |Ĉ| clusters, the average
number of clusters |Ĉ|cb,avg is 1

Ncb

∑Ncb
j=1 |Ĉ|cb,j . The remaining

ratio of Winograd with deep reuse rc is |Ĉ|cb,avg

CP . Then, the
computational complexity of the Winograd phase except for out-
put accumulation isO(rc·N ·H·W ·C·K) and the computational
complexity of output accumulation is O(Ncb ·N ·H ·W ·K).
Therefore, the overall computational complexity of DREW is
O
((

Ĥ
K + rc +

1
Lcb

)
·N ·H ·W · C ·K

)
.

Properties. There are two clustering parameters to adjust in
DREW: clustering granularity (the number of tile channels Lcb)
and the number of hash functions (Ĥ). They affect the time
savings by reuse and accuracy loss. With the computational
complexity analysis with different parameter combinations, we
observe the following properties when combining deep reuse
and Winograd convolution:! When Ĥ remains unchanged, a smaller granularity (smaller

Lcb) generally leads to a smaller reuse-caused accuracy
loss. Meanwhile, a smaller Lcb leads to more additional
operations in output accumulation.! WhenLcb remains unchanged, more hash functions (larger
Ĥ) generally incur smaller reuse-caused accuracy loss.
Meanwhile, a larger Ĥ causes a larger number of clusters
and thus a larger rc.! When Lcb is large, Ĥ affects the reuse-caused accuracy
loss and rc more than Lcb does. When Lcb is small, the
change of Lcb affects the reuse-caused accuracy loss and
rc more than Ĥ does.! An appropriate combination of Lcb and Ĥ can reduce(

Ĥ
K + rc +

1
Lcb

)
, which is a coefficient in DREW’s com-

plexity, thus resulting in more computation savings.

VI. IMPLEMENTATION

We build a library called DREW for three purposes. First,
DREW can show users the benefits of combining deep reuse
technology and Winograd convolution, which could shed light
on the research of applying data science technologies to machine
learning. Second, to increase the compatibility of DREW with
other deep learning applications, we implement a complete CNN
pipeline in DREW, including a series of typical neural network
layers, such as convolutional layers, pooling layers, and fully
connected layers. Users can use DREW to build a complete CNN
neural network, or combine DREW with other existing neural
network libraries, so as to achieve an efficient CNN inference
process. Third, we present our DREW pipeline in a way that
is compatible with C/C++, Java, and Python. Specifically, we
provide sequential and parallel versions of the convolutional
layer in C/C++.

VII. EVALUATION

A. Experimental Setup

Methodology. We compare DREW with the original Wino-
grad convolution without deep reuse [18], [38] in both serial
and parallel modes. We first apply our approach to only a

single convolutional layer to measure the single-layer speedups
(Section VII-B). Second, we apply our approach to the full neural
networks with the optimal clustering configurations from the
single-layer experiments to measure the end-to-end speedups
(Section VII-C). Third, we analyze the influence of different
factors on performance, including the clustering configurations
of clustering granularity Lcb and the number of hash functions
Ĥ , and the experiment configurations of the batch size and
the number of threads (Section VII-E). Fourth, we analyze the
runtime overhead of each part of our approach (Section VII-F).

Platforms. We conduct experiments to measure the perfor-
mance of DREW on four platforms. First, we evaluate DREW
on the edge device of Raspberry Pi 4 B with 8 GB LPDDR4
memory, as introduced in Section II-A. Second, we evaluate
DREW on NVIDIA Jetson AGX Xavier, which is a powerful
edge device equipped with an 8-core ARM v8.2 64-bit CPU and
a 512-core Volta GPU, along with 32 GB LPDDR4 memory.
Third, we measure DREW on a platform equipped with an Intel
i7-7700 K CPU with 64 GB DDR4 memory. Fourth, we use
another platform equipped with an Intel i9-9900 K with 64 GB
DDR4 memory.

Workloads. We evaluate DREW with five different networks:
LeNet-5 [25], CifarNet [26], VGG-11 [2], VGG-16 [2], and
SqueezeNet [27], which are classic and have been evaluated
in many works [23], [39], [40], [41], [42]. SqueezeNet is partic-
ularly useful for edge devices which is resource-constrained. It
has been widely used in various computer vision applications.
The dataset of LeNet-5 is MNIST [43] with sparse images of size
28×28. The dataset of CifarNet is CIFAR10 [37] with images
of size 32×32. We modify the size of filters in LeNet-5 and
CifarNet to 3×3 for our study and there is no influence on
accuracy. The dataset of VGG-11, VGG-16 and SqueezeNet is
ImageNet [44] with image size of 224×224. VGG-11 and VGG-
16 use 3×3filters exclusively in the convolution layers where the
Winograd algorithm can be directly applied. SqueezeNet uses a
3×3 convolution in each of its fire modules. For single-layer
performance, we only report the performance results of the con-
volutional layers with 3×3 filters in SqueezeNet (Firex_e3).
For end-to-end performance, we report the performance results
for the full SqueezeNet network, where only the 3×3 convolu-
tional layers incorporate our work.

B. Single-Layer Performance

We perform experiments with a range of different clustering
configurations and collect the speedup and accuracy results for
the single convolutional layer of the networks.

Configuration. We first explore the clustering granularityLcb,
which represents the number of channels of tiles for clustering.
We test the channel number of tiles of the factors of C, which
is less than 4 in each convolutional layer. Note that we do not
explore the Lcb value that is larger than 4 because it will cause
a large remaining ratio and unendurable accuracy loss. For the
number of hash functions Ĥ , we explore a range from 10 to
30. In the following experiments, on Raspberry Pi, the number
of threads is set to 4 in parallel mode. On Jetson AGX Xavier
platform, the number of threads is set to 8 in parallel mode. On

10190 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

TABLE II
SINGLE-LAYER PERFORMANCE BENEFITS. Lcb IS THE NUMBER OF CHANNELS OF TILES, Ĥ IS THE NUMBER OF HASH FUNCTIONS, rc IS THE REMAINING RATIO,
Serial MEANS SERIAL SPEEDUP, Parallel MEANS PARALLEL SPEEDUP, “CORE I7” AND “CORE I9” ARE Core i7 AND Core i9 PLATFORMS, “RASPBERRY PI”

REPRESENTS THE RASPBERRY PI PLATFORM, “JETSON” REPRESENTS THE NVIDIA JETSON AGX XAVIER PLATFORM, AND ∆ ACC IS THE ACCURACY LOSS

Core i7 platform, the number is set to 8. On Core i9 platform,
it is set to 16. We set the number of threads according to the
maximum number of threads of the platform. Besides, on Jetson
AGX Xavier, Core i7 platform and Core i9 platform, we fix the
batch size to 100 for all neural networks. On the the Raspberry
Pi platform, due to the memory limitations, we fix the batch
size to 100 for LeNet-5, CifarNet and SqueezeNet, to 64 for
VGG-11, and to 16 for VGG-16, which are common cases in
real-life applications.

Performance-Accuracy Balance. We aim to achieve a balance
between performance and accuracy. To measure the balance
between performance improvement and accuracy loss, we de-
fine efficiency score: e = −speedup · log(accuracy loss). The
higher value of e means that we obtain relatively higher perfor-
mance with less accuracy loss.

Result. We report in Table II the speedups achieved
by the configuration that has the highest efficiency score

in each convolutional layer, and we have the following
observations.

First, our approach leads to significant performance benefits.
For the serial Winograd convolution, our approach delivers an
average speedup of 8.53× on Raspberry Pi platform, 8.01×
on Jetson AGX Xavier platform, 7.21× on Core i7 platform,
and 6.99× on Core i9 platform. Even for the highly parallel
implementation, DREW still provides an average speedup of
2.33× on Raspberry Pi platform, 2.09× on Jetson AGX Xavier
platform, 2.21× on Core i7 platform, and 2.14× on Core i9
platform. The performance speedup is up to 14.07× and 4.36×
in serial mode and parallel mode respectively, which proves the
effectiveness of DREW.

Second, an appropriate combination of Lcb and Ĥ incurs a
small remaining ratio, thus achieving significant time savings.
Experiments show that our approach performs well when Lcb

is one. Note that although larger Lcb leads to higher speedups,

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10191

TABLE III
END-TO-END PERFORMANCE BENEFITS. ∆ ACC IS THE ACCURACY LOSS

the accuracy loss could also be large, which results in a poor
efficiency score (detailed in Section VII-E).

Third, on the networks whose image size is large, such as
VGG-11 and VGG-16, the remaining ratio becomes smaller,
and thus the achieved speedup is higher. Note that the first
subconvolutional layer in each convolutional layer in VGG-11
and VGG-16, such as Conv3-1, Conv4-1, and Conv5-1, can have
a larger remaining ratio compared to the other layers, because
of the previous maximum pooling operation.

Accuracy Loss. Accuracy is another concern in lossy CNN
inference. We report the single-layer accuracy loss of DREW
compared to [23] in Table II, which implies that DREW incurs
less than 1.32% accuracy loss in each layer. Note that we have
a fine-tuning process to further reduce the accuracy loss, which
is detailed in Section VII-D.

C. End-to-End Performance

To measure the end-to-end performance benefits of the full
neural networks, we apply DREW to each convolutional layer
with the configuration that can attain the best efficiency score
mentioned in Section VII-B.

We show our performance benefits on the end-to-end execu-
tion time of the full neural networks in Table III. We involve all
runtime overhead (clustering and others) in our time measure-
ment and have the following observations.

First, our deep-reuse Winograd convolution achieves signifi-
cant performance benefits. For the serial Winograd convolution,
DREW achieves an average speedup of 6.20× on the Raspberry
Pi platform, 5.69× on the Jetson AGX Xavier platform, 6.13×
on Core i7 platform, and 5.95× on Core i9 platform. For the
parallel implementation, it still provides an average speedup of
1.66× on Raspberry Pi platform, 1.54× on Jetson AGX Xavier
platform, 1.80× on Core i7 platform, and 1.73× on Core i9
platform. The performance speedup is up to 9.23× and 2.76×
in serial mode and parallel mode respectively.

Second, for LeNet-5, CifarNet and SqueezeNet, the end-to-
end speedups are not as much as the speedups of single layers.
The reason is that there are other layers, such as the activation
layer and the pooling layer, mixed into CNNs, and Squeezenet
also has some convolutional layers with a filter size other than
3×3 that cannot be accelerated using winograd convolution. In
contrast, for VGG-11 and VGG-16, the end-to-end speedups
are larger than the speedups of single layers, and the reason
is that the remaining ratio is reduced for the subconvolutional

layers, such as Conv3-2, Conv4-2, and Conv5-2, before pooling
layers.

Third, the performance benefit among the end-to-end process
is not as much as the computation saving because deep reuse
introduces extra operations: clustering and the reconstruction
of the feature maps after deep reuse optimization. As to the
single-layer performance in Table II, we only need to perform
2% to 20% of the original computations with DREW in these
networks, as indicated by the rc column.

In addition, the accuracy loss is less than 2.77%, as shown in
Table III. A fine-tuning process to further reduce the accuracy
loss is introduced in Section VII-D.

D. Trade-Off Between Accuracy and Efficiency

In our experiment, DREW incurs an additional 0.26% to
2.77% accuracy loss if the model weights remain unchanged,
due to the limitation that we cannot adjust the length of neu-
ron vector to be less than 16. Since accuracy is important in
many applications, we have the following designs to remain the
accuracy in an acceptable range.

First, the network can be fine-tuned to amortize the accu-
racy loss, which is similar to prior practices [45]. We re-train
the model using DREW. Therefore, only the model weights
are updated, instead of changing the model architecture. After
fine-tuning, DREW causes less than 0.4% accuracy loss on all
networks.

Note that fine-tuning, as part of the training process, does not
lengthen the inference time, so the reported inference speedups
still remain.

Second, in our analysis, the first layer in CifarNet and the first
three layers in VGG-11 and VGG-16 cause the major accuracy
loss. We can apply deep reuse in the other layers while remaining
the front layers unchanged.

Third, the balance between performance and accuracy loss can
be adjusted to meet various application scenarios. The number
of channels Lcb and the number of hash functions Ĥ , mentioned
in Section V-D, can be adjusted by users. For example, in a rigid
scenario, users could set a smallLcb with a large Ĥ so that the ac-
curacy loss shall be greatly minimized. We use LeNet-5 with 100
batch size and eight threads on Core i7 platform for illustration,
and show the relation between accuracy loss and performance
exchange of DREW in Fig. 9. The performance exchange is
defined as the ratio difference between the performance of each
measurement and the highest performance achieved.

10192 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 9. Trade-off between accuracy and performance.

Fig. 10. Influence from different clustering configurations.

Fig. 11. Influence from batch size and the number of threads. N represents
the batch size.

Fig. 9 shows that we can trade performance for accuracy in
DREW.

E. Configuration Influence Analysis

To further analyze the efficacy of DREW, we explore the
influence of different configurations on DREW and use CifarNet
on Core i9 platform for illustration. For clustering granularity
and hash size, we fix the batch size to 100 and the number of
threads on CPUs to 16. When we analyze the batch size and
thread number, we only vary the batch size and the number of
threads, while retaining the other configurations unchanged. The
performance results are shown in Figs. 10 and 11.

Hash Size. The number of hash functions mainly influences
the remaining ratio (introduced in Section II-C). With the de-
creasing number of hash functions, more computation is saved
due to a smaller remaining ratio. Therefore, the performance
decreases along with the increase of the hash size, as shown in
both Conv1 and Conv2 of Fig. 10.

Fig. 12. Execution time analysis of Winograd convolution and DREW.
InputTrans represents input transformation, ElemMul represents element-
wise multiplication, OutputTrans represents output transformation, and
cluster represents the clustering step of DREW.

Clustering Granularity. To study how clustering granularity
affects the performance, we explore the channel number of tiles
Lcb of all the factors of C in both convolutional layers. Fig. 10
shows that performance increases significantly as granularity
becomes larger and the number of hash functions becomes
smaller. The reason is that when the number of hash functions is
small, the remaining ratio becomes small; at the same time, large
granularity results in fewer addition operations in the output
accumulation, which causes discontinuous memory accesses.
However, with the increasing number of hash functions Ĥ , the
remaining ratio becomes large especially when the granularity
is large, resulting in moderate performance benefits.

Batch Size. The remaining ratio becomes smaller as the batch
size increases, introducing more performance benefits. For ex-
ample, we explore the batch sizes of 100, 200, and 500 in Fig. 11.
DREW achieves the highest speedups for both Conv1 and Conv2
when the batch size is 500.

Number of Threads. DREW achieves significant performance
benefits in all cases. We explore the number of threads of 1, 4,
8, and 16 while keeping the other configurations unchanged in
Fig. 11. For example, when the number of threads is 16, the
speedup can be up to 2.52×. Note that the baseline and DREW
use the same number of threads. The reason for increasing
speedup with decreasing number of threads is that adding the
number of threads increases the proportion of the extra overhead
introduced by parallelism that cannot be amortized.

F. Execution Time Analysis

We analyze the execution time for each step of Winograd
convolution and DREW in each layer, and use CifarNet on Core
i9 platform for illustration. The results of the other benchmarks
are similar. Fig. 12 shows the execution time proportions of each
step of Winograd and DREW respectively.

For Winograd convolution, the proportions of input transfor-
mation, element-wise multiplication, and output transformation
are 18%, 59%, and 23% forConv1, and are 9%, 83%, and 8% for
Conv2, respectively. For DREW, the proportions of clustering,
input transformation, element-wise multiplication, and output
transformation are 26%, 8%, 17%, and 7% for Conv1, and are
16%, 9%, 30%, and 6% for Conv2, respectively. Note that the
results of DREW are the proportions of the execution time of
each step of DREW to the total execution time of Winograd

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10193

Fig. 13. Energy efficiency comparison between DREW and Winograd convo-
lution on different platforms.

convolution. We have the following findings. First, the exper-
imental results show that element-wise multiplication is the
most time-consuming step in Winograd convolution. Second,
our work introduces some clustering overhead, but significantly
reduces the runtime of input transformation, element-wise mul-
tiplication, and output transformation in Winograd convolution.

G. Energy Efficiency

Energy is an important consideration for modern processors,
especially for the edge device executing inferences. DREW
greatly reduces energy consumptions by reducing the number
of computations. Similar to [46], we use performance per Watt
as the metric to measure energy efficiency. The Thermal Design
Power (TDP) is 6.25 W on Raspberry Pi 4 Model B, 30 W on
NVIDIA Jetson AGX Xavier, 95 W on i9-9900 K, and 91 W on
i7-7700 K. We show the energy efficiency comparison between
DREW and the original Winograd convolution on different
platforms in parallel mode in Fig. 13, including the single-layer
and end-to-end performance comparison.

In detail, DREW brings 45% extra energy savings in single-
layer comparison, and 35% extra energy savings in end-to-
end comparison. For networks such as LeNet-5, CifarNet and
SqueezeNet, the overall end-to-end energy efficiency benefit is
not as much as that of single layers. The reason is that extra layers
such as pooling, fully-connected layers, and convolutional layers
of other sizes exist in end-to-end models, which also consume
resources.

H. Applicability to Other Networks

DREW can be applied to other convolutional neural net-
works. We select LeNet-5, CifarNet, VGG-11, VGG-16 and
SqueezeNet for validation because they are classic and have
been evaluated in many works. More advanced models have
not substantially changed the use of convolution. For example,
the Conv1-2 of VGG-16 [2], which has 64 input features and
64 output features, is the same as Conv2_1 in ResNet-18 [1].
Please note that the Winograd algorithm has the limitation that
it can only be applied to convolutions with 3×3 filters. Because
DREW is built on Winograd, the filters of convolutional layers
should be presented as 3×3. Furthermore, advanced models
only make the weights more efficient without considering the
input similarities. Therefore, our work still can be used in other
situations.

VIII. RELATED WORK

In this section, we introduce the related work from data reuse,
Winograd, and compression perspectives.

Data Reuse. Data reuse has been proved to be a great success
in data management and analytics [47], [48], [49], [50], [51],
[52]. Similarity and redundancy are utilized to reduce the amount
of computation and space. Zhang et al. [48] developed text
analytics directly on compression (TADOC) in which the key
idea is data reuse: for a segment of duplicated content, TADOC
only stores it once to save space and computes it once to reduce
computation. DeepSqueeze [51] added semantic compression
technology to traditional data compression algorithms to recog-
nize the correlation between tabular data columns for reusing.
Li et al. [52] compressed the uncertain trajectory data in Road
Networks by mining and reusing the similarity between trajec-
tories. Data reuse has also been applied to deep convolutional
neural networks, which is called deep reuse. Deep reuse is an
acceleration method that speedups convolution by reusing the
similarities among neuron vectors. The closest work to DREW
is [23], which applies the deep reuse in CNN inference process.
Ning et al. [10] also applied the deep reuse in CNN training
process on the fly. Different from these works, we combine
deep reuse with Winograd together, which further improves the
performance of CNN.

Winograd. Cook [53] and Toom [54] proposed a class of min-
imal filtering algorithms, and Winograd [34] generalized these
fast CNN algorithms. Lavin [18] further extended Winograd as
an efficient convolution operation. There are many works on
accelerating the Winograd algorithm. Some works are devoted
to solving the limitations of the Winograd algorithm. To tackle
the problem that Winograd is only effective on convolutions with
kernel size as 3×3 and stride as 1, Jiang [55] proposed a nested
Winograd algorithm, which uses an iterative decomposition
method to turn the large convolution kernel into a series of 3×3
tiles. Yepez [56] extended the Winograd algorithm to a stride
of 2, which is also valid for one, two, or three dimensions. De-
composable Winograd Method (DWM) [57] breaks through the
limitation of the original Winograd’s minimal filtering algorithm
to wide and general convolutions. It decomposes kernels with
large size or large stride to several small kernels with stride
as 1 for further applying Winograd methods, so as to reduce the
number of multiplications while keeping the numerical accuracy.
There are studies applying Winograd to further enhance the
acceleration of CNN inference. For example, Li et al. [58] inte-
grated model compression quantization technology to represent
the original floating-point value as a low-precision code, thereby
gaining potentials for acceleration. Other works focus on speed-
ing up Winograd convolution on specific hardware. Jia et al. [21]
optimized the Winograd-based convolution on Intel Xeon Phi
platforms. Yan et al. [22] optimized the batched Winograd
algorithm on GPUs. Moreover, the Winograd algorithm has been
integrated into many popular libraries, such as FALCON [59],
LIBXSMM [60], MKL-DNN [20], and SASS [61].

Model Compression. Model compression techniques have
been proposed to save the computation time and memory oc-
cupation of CNNs [62], [63], [64], [65], [66], [67]. Model

10194 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

compression can be divided into four categories [68]: pruning
and quantization, low-rank factorization, transferred/compact
convolutional filters, and knowledge distillation. Deep reuse,
which leverages the similarities among input online, is orthogo-
nal to model compression techniques, which reduces the model
size offline by leveraging the similarities among weights. Deep
reuse can be applied to compressed models, as discussed in [23],
and hence they are complementary to each other.

In general, we extend the idea of data reuse to Winograd, and
provide a new application scenario for applying data engineering
technologies to deep learning at the edge. We believe that our
work can shed lights on the future research of applying CNN
inference to edge devices.

IX. CONCLUSION

This article combines deep reuse with Winograd convolution,
and yields a library, called DREW, to enable efficient CNN
inference at the edge. By enabling deep reuse in the Winograd
algorithm, DREW reduces the number of convolution operations
to an average of 10% of the original operations. The paper
presents how deep reuse can be applied to Winograd, thus
enabling efficient CNN inference on edge device. It discusses the
major challenges when applying deep reuse to Winograd convo-
lution, and provides a set of solutions in applying our method. In
evaluation, DREW provides 7.69× performance improvement
over the original Winograd convolution with almost no accuracy
loss, and achieves up to 62% energy efficiency benefits.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 2261–2269.

[4] A. Ordookhanians et al., “Demonstration of krypton: Optimized cnn infer-
ence for occlusion-based deep CNN explanations,” Proc. VLDB Endow.,
vol. 12, no. 12, pp. 1894–1897, 2019.

[5] D. Kang et al., “NoScope: Optimizing neural network queries over video
at scale,” Proc. VLDB Endow., vol. 10, pp. 1586–1597, 2017.

[6] S. Nakandala, A. Kumar, and Y. Papakonstantinou, “Incremental and
approximate inference for faster occlusion-based deep CNN explanations,”
in Proc. Int. Conf. Manage. Data, New York, NY, USA: Association for
Computing Machinery, 2019, pp. 1589–1606.

[7] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE Proc., vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[8] N. Band, “MemFlow: Memory-aware distributed deep learning,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 2883–2885.

[9] Q. Xu et al., “Payment behavior prediction on shared parking lots with
TR-GCN,” The VLDB J., vol. 31, pp. 1–24, 2022.

[10] L. Ning, H. Guan, and X. Shen, “Adaptive Deep Reuse: Accelerating CNN
Training on the Fly,” in Proc. Int. Conf. Data Eng., 2019, pp. 1538–1549.

[11] P. Bellini, P. Nesi, and G. Pantaleo, “IoT-enabled smart cities: A review
of concepts, frameworks and key technologies,” Appl. Sci., vol. 12, no. 3,
2022, Art. no. 1607.

[12] B. Jacob et al., “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2704–2713.

[13] Y. Liu et al., “Optimizing CNN model inference on CPUs,” in Proc.
USENIX Annu. Techn. Conf., 2019, pp. 1025–1039.

[14] S. Nakandala and A. Kumar, “Vista: Optimized system for declarative
feature transfer from deep cnns at scale,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2020, pp. 1685–1700.

[15] A. Ordookhanians et al., “Demonstration of krypton: Optimized CNN
inference for occlusion-based deep CNN explanations,” Proc. VLDB En-
dowment, vol. 12, pp. 1894–1897, 2019.

[16] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[17] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 2815–2823.

[18] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4013–4021.

[19] cuDNN: Efficient primitives for deep learning, 2014. [Online]. Available:
https://developer.nvidia.com/cudnn

[20] Intel(R) math kernel library for deep neural networks, 2016. [Online].
Available: https://github.com/oneapi-src/oneDNN

[21] Z. Jia et al., “Optimizing N-dimensional, winograd-based convolution
for manycore CPUs,” in Proc. 25th ACM SIGPLAN Symp. Princ. Pract.
Parallel Program., 2018, pp. 109–123.

[22] D. Yan, W. Wang, and X. Chu, “Optimizing batched winograd convolution
on GPUs,” in Proc. 25th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2020, pp. 32–44.

[23] L. Ning and X. Shen, “Deep reuse: Streamline CNN inference on the fly
via coarse-grained computation reuse,” in Proc. ACM Int. Conf. Super-
computing, 2019, pp. 438–448.

[24] R. Wu et al., “DREW: Efficient winograd CNN inference with deep reuse,”
in Proc. ACM Web Conf., 2022, pp. 1807–1816.

[25] Y. Lecun et al., “Comparison of learning algorithms for handwritten digit
recognition,” in Proc. Int. Conf. Artif. Neural Netw., 1995, pp. 53–60.

[26] “CifarNet,” 2020. [Online]. Available: http://places.csail.mit.edu/
deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/
nets/

[27] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” 2016, arXiv:1602.07360.

[28] “Raspberry Pi 4 model B,” 2022. [Online]. Available: https://www.
raspberrypi.com

[29] M. D. Mudaliar and N. Sivakumar, “IoT based real time energy monitoring
system using raspberry Pi,” Internet Things, vol. 12, 2020, Art. no. 100292.

[30] G. Bekaroo and A. Santokhee, “Power consumption of the raspberry Pi:
A comparative analysis,” in Proc. IEEE Int. Conf. Emerg. Technol. Innov.
Bus. Pract. Transformation Societies, 2016, pp. 361–366.

[31] C. W. Zhao, J. Jegatheesan, and S. C. Loon, “Exploring IoT application
using raspberry Pi,” Int. J. Comput. Netw. Appl., vol. 2, no. 1, pp. 27–34,
2015.

[32] S. S. Prabha, A. J. P. Antony, M. J. Meena, and S. R. Pandian, “Smart
cloud robot using raspberry pi,” in Proc. IEEE Int. Conf. Recent Trends
Inf. Technol., 2014, pp. 1–5.

[33] Y. Sun, L. Geng, and K. Dan, “Design of smart mirror based on raspberry
pi,” in Proc. IEEE Int. Conf. Intell. Transp. Big Data Smart City, 2018,
pp. 77–80.

[34] S. Winograd, “Arithmetic complexity of computations,” Siam, 1980.
[35] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions

via hashing,” in Proc. 25th Int. Conf. Very Large Data Bases, 1999,
pp. 518–529.

[36] Y.-C. Li, C.-M. Yeh, and C.-C. Chang, “Data hiding based on the similarity
between neighboring pixels with reversibility,” Digit. Signal Process.,
vol. 20, no. 4, pp. 1116–1128, 2010.

[37] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[38] C. Zhang, F. Zhang, X. Guo, B. He, X. Zhang, and X. Du, “iMLBench: A
machine learning benchmark suite for CPU-GPU integrated architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1740–1752, Jul. 2021.

[39] W. Wen et al., “Learning structured sparsity in deep neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 2082–2090.

[40] H. Wang et al., “ATOMO: Communication-efficient learning via
atomic sparsification,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 9872–9883.

[41] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional
networks for classification and detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 10, pp. 1943–1955, Oct. 2016.

[42] J. Tang et al., “Enabling deep learning on IoT devices,” Computer, vol. 50,
no. 10, pp. 92–96, Oct. 2017.

[43] Y. LeCun, C. Cortes, and C. J. Burges, “THE mnist database of handwritten
digits,” 1998. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[44] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, pp. 211–252, 2015.

[45] M. Figurnov et al., “PerforatedCNNs: Acceleration through elimination
of redundant convolutions,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 1–9.

ZHANG et al.: EXPANDING THE EDGE: ENABLING EFFICIENT WINOGRAD CNN INFERENCE WITH DEEP REUSE ON EDGE DEVICE 10195

[46] K. Zhang, J. Hu, B. He, and B. Hua, “DIDO: Dynamic pipelines for in-
memory key-value stores on coupled CPU-GPU architectures,” in Proc.
IEEE 33rd Int. Conf. Data Eng., 2017, pp. 671–682.

[47] F. Zhang et al., “Zwift: A programming framework for high performance
text analytics on compressed data,” in Proc. ACM Int. Conf. Supercomput.,
2018, pp. 195–206.

[48] F. Zhang et al., “Efficient document analytics on compressed data: Method,
challenges, algorithms, insights,” Proc. VLDB Endowment, vol. 11, no. 11,
pp. 1522–1535, 2018.

[49] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “Enabling efficient
random access to hierarchically-compressed data,” in Proc. IEEE 36th
Int. Conf. Data Eng., 2020, pp. 1069–1080.

[50] F. Zhang et al., “TADOC: Text analytics directly on compression,” VLDB
J., vol. 30, pp. 163–188, 2021.

[51] A. Ilkhechi et al., “Deepsqueeze: Deep semantic compression for tab-
ular data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp. 1733–1746.

[52] T. Li et al., “Compression of uncertain trajectories in road networks,” Proc.
VLDB Endowment, vol. 13, no. 7, pp. 1050–1063, 2020.

[53] S. Cook, “On the minimum computation time for multiplication,” Ph.D.
dissertation, Harvard U., Cambridge, Mass, 1966.

[54] A. L. Toom, “The complexity of a scheme of functional elements realizing
the multiplication of integers,” Soviet Mathematics Doklady, vol. 3, no. 4,
pp. 714–716, 1963.

[55] J. Jiang, X. Chen, and C.-Y. Tsui, “A reconfigurable winograd CNN accel-
erator with nesting decomposition algorithm for computing convolution
with large filters,” 2021, arXiv:2102.13272.

[56] J. Yepez and S.-B. Ko, “Stride 2 1-D, 2-D, and 3-D winograd for convolu-
tional neural networks,” IEEE Trans. Very Large Scale Integration Syst.,
vol. 28, no. 4, pp. 853–863, Apr. 2020.

[57] D. Huang et al., “DWM: A decomposable winograd method for convolu-
tion acceleration,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 4174–4181.

[58] G. Li, L. Liu, X. Wang, X. Ma, and X. Feng, “Lance: Efficient low-
precision quantized winograd convolution for neural networks based on
graphics processing units,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2020, pp. 3842–3846.

[59] “FALCON Library: Fast image convolution in neural networks on intel ar-
chitecture,” 2016, [Online]. Available: https://colfaxresearch.com/falcon-
library/

[60] “LIBXSMM,” 2020. [Online]. Available: https://github.com/hfp/libxsmm
[61] “MaxAs,” 2020. [Online]. Available: https://github.com/NervanaSystems/

maxas
[62] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding,”
in Proc. Int. Conf. Learn. Representations, 2016, pp. 1–14.

[63] P. Molchanov et al., “Pruning convolutional neural networks for resource
efficient inference,” in Proc. 5th Int. Conf. Learn. Representations, Toulon,
France, 2017, pp. 1–17.

[64] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 4820–4828.

[65] C. Zhu et al., “Trained ternary quantization,” in Proc. 5th Int. Conf. Learn.
Representations, Toulon, France, 2017, pp. 1–10.

[66] M. Rastegari et al., “XNOR-Net: Imagenet classification using binary con-
volutional neural networks,” in Proc. Eur. Conf. Comput. Vis., ser. Lecture
Notes in Computer Science, B. Leibe and J. Matas Eds., Amsterdam, The
Netherlands, Oct. 11–14, 2016, pp. 525–542.

[67] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. Int. Conf. Neural Inf. Process. Syst. Deep Learn.
Representation Learn. Workshop, 2015, pp. 1–9.

[68] Y. Cheng et al., “A survey of model compression and acceleration for deep
neural networks,” 2017, arXiv:1710.09282.

Feng Zhang (Member, IEEE) received the bachelor’s
degree from Xidian University, in 2012, and the PhD
degree in computer science from Tsinghua Univer-
sity, in 2017. He is an associate professor with the
Key Laboratory of Data Engineering and Knowledge
Engineering (MOE), Renmin University of China.
His major research interests include parallel and dis-
tributed systems.

Ruofan Wu received the bachelor’s degree from the
Renmin University of China, in 2021. She is currently
working toward the master degree in computer sci-
ence with the Renmin University of China, advised
by Prof. Feng Zhang. Her current research interests
include parallel computing, heterogeneous comput-
ing, and parallel accelerating.

Jiawei Guan received the bachelor’s degree from the
Renmin University of China, in 2022. She is currently
working toward the PhD degree in computer science
with the Renmin University of China, advised by
prof. Feng Zhang. Her research interests include high
performance computing and machine learning.

Zhen Zheng received the PhD degree from the
Department of Computer Science and Technology,
Tsinghua University, China, in 2019. He was a Vis-
iting Scholar of North Carolina State University, in
2018. He joined Alibaba in August 2019 as a Re-
searcher. His research interests include AI compiler,
large scale machine learning systems, and heteroge-
neous computing.

Xiaoguang Guo received the bachelor’s degree from
the Renmin University of China, in 2022. He joined
the Key Laboratory of Data Engineering and Knowl-
edge Engineering (MOE), in 2020. His research in-
terests include high performance computing, machine
learning, and parallel and distributed systems.

Xiao Zhang received the master’s degree from Ren-
min University and the PhD degree from the Institute
of Computing Technology, Chinese Academy of Sci-
ence, in 1998 and 2001, respectively, both in computer
science and technology. He is a professor with the
School of Information, Renmin University of China.
His research interests include Big Data management
systems.

10196 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Xiaoyong Du received the BS degree from Hangzhou
University, Zhejiang, China, in 1983, the ME degree
from the Renmin University of China, Beijing, China,
in 1988, and the PhD degree from the Nagoya Insti-
tute of Technology, Nagoya, Japan, in 1997. He is
currently a professor with the School of Information,
Renmin University of China. His current research
interests include databases and intelligent informa-
tion retrieval.

Xipeng Shen (Member, IEEE) received the PhD
degree in computer science from the University of
Rochester, in 2006. He is a professor in Computer
Science with the North Carolina State University. He
is a receipt of the DOE Early Career Award, NSF
CAREER Award, Google Faculty Research Award,
and IBM CAS Faculty fellow Award. He is an ACM
distinguished member, ACM distinguished speaker.
His interest is in Programming Systems and Machine
Learning.

